
Magit User Manual
for version v4.5.0-47-g24e97fcd

Jonas Bernoulli

Copyright (C) 2015-2026 Jonas Bernoulli <emacs.magit@jonas.bernoulli.dev>

You can redistribute this document and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

i

Table of Contents

1 Introduction . 1

2 Installation . 3
2.1 Installing from Melpa . 3
2.2 Installing from the Git Repository . 3
2.3 Post-Installation Tasks . 4

3 Getting Started . 6

4 Interface Concepts . 8
4.1 Modes and Buffers . 8

4.1.1 Switching Buffers . 8
4.1.2 Naming Buffers . 10
4.1.3 Quitting Windows . 11
4.1.4 Automatic Refreshing of Magit Buffers . 11
4.1.5 Automatic Saving of File-Visiting Buffers 12
4.1.6 Automatic Reverting of File-Visiting Buffers 13

Risk of Reverting Automatically . 14
4.2 Sections . 15

4.2.1 Section Movement . 15
4.2.2 Section Visibility . 17
4.2.3 Section Hooks . 19
4.2.4 Section Types and Values . 20
4.2.5 Section Options . 21

4.3 Transient Commands . 21
4.4 Transient Arguments and Buffer Variables . 21
4.5 Completion, Confirmation and the Selection . 23

4.5.1 Action Confirmation . 23
4.5.2 Completion and Confirmation . 26
4.5.3 The Selection . 27
4.5.4 The hunk-internal region . 27
4.5.5 Support for Completion Frameworks . 28
4.5.6 Additional Completion Options . 29

4.6 Mouse Support . 29
4.7 Running Git . 29

4.7.1 Viewing Git Output . 29
4.7.2 Git Process Status . 30
4.7.3 Running Git Manually . 30
4.7.4 Git Executable . 31
4.7.5 Global Git Arguments . 32

ii

5 Inspecting . 33
5.1 Status Buffer . 33

5.1.1 Status Sections . 34
5.1.2 Status File List Sections . 36
5.1.3 Status Log Sections . 37
5.1.4 Status Header Sections . 37
5.1.5 Status Module Sections . 38
5.1.6 Status Options . 39

5.2 Repository List . 40
5.3 Logging . 42

5.3.1 Refreshing Logs . 43
5.3.2 Log Buffer . 43
5.3.3 Log Margin . 45
5.3.4 Select from Log . 46
5.3.5 Reflog . 47
5.3.6 Cherries . 47

5.4 Diffing . 48
5.4.1 Refreshing Diffs . 49
5.4.2 Commands Available in Diffs . 51
5.4.3 Diff Options . 52
5.4.4 Revision Buffer . 54

5.5 Ediffing . 55
5.6 References Buffer . 57

5.6.1 References Sections . 60
5.7 Bisecting . 61
5.8 Visiting Files and Blobs . 62

5.8.1 General-Purpose Visit Commands . 62
5.8.2 Visiting Files and Blobs from a Diff . 62

5.9 Blaming . 64

6 Manipulating . 68
6.1 Creating Repository . 68
6.2 Cloning Repository . 68
6.3 Staging and Unstaging . 70

6.3.1 Staging from File-Visiting Buffers . 71
6.4 Applying . 72
6.5 Committing . 73

6.5.1 Initiating a Commit . 73
Creating a new commit . 73
Editing the last commit . 73
Editing any reachable commit . 74
Editing any reachable commit and rebasing immediately 75
Options used by commit commands . 76

6.5.2 Editing Commit Messages . 77
Using the Revision Stack . 78
Commit Pseudo Headers . 79

iii

Commit Mode and Hooks . 79
Commit Message Conventions . 80

6.6 Branching . 81
6.6.1 The Two Remotes . 81
6.6.2 Branch Commands . 82
6.6.3 Branch Git Variables . 86
6.6.4 Auxiliary Branch Commands . 88

6.7 Merging . 88
6.8 Resolving Conflicts . 90
6.9 Rebasing . 92

6.9.1 Editing Rebase Sequences . 93
6.9.2 Information About In-Progress Rebase . 96

6.10 Cherry Picking . 98
6.10.1 Reverting . 100

6.11 Resetting . 100
6.12 Stashing . 101

7 Transferring . 104
7.1 Remotes . 104

7.1.1 Remote Commands . 104
7.1.2 Remote Git Variables . 105

7.2 Fetching . 106
7.3 Pulling . 107
7.4 Pushing . 107
7.5 Plain Patches . 109
7.6 Maildir Patches . 109

8 Miscellaneous . 111
8.1 Tagging . 111
8.2 Notes . 111
8.3 Submodules . 112

8.3.1 Listing Submodules . 112
8.3.2 Submodule Transient . 113

8.4 Subtree . 114
8.5 Worktree . 115
8.6 Sparse checkouts . 116
8.7 Bundle . 116
8.8 Common Commands . 117
8.9 Wip Modes . 118

8.9.1 Wip Graph . 119
8.10 Commands for Buffers Visiting Files . 120
8.11 Minor Mode for Buffers Visiting Blobs . 123

iv

9 Customizing . 125
9.1 Per-Repository Configuration . 125
9.2 Essential Settings . 126

9.2.1 Safety . 126
9.2.2 Performance . 127

Microsoft Windows Performance . 129
MacOS Performance . 129

9.2.3 Global Bindings . 129

10 Plumbing . 131
10.1 Calling Git . 131

10.1.1 Getting a Value from Git . 131
10.1.2 Calling Git for Effect . 133

10.2 Section Plumbing . 135
10.2.1 Creating Sections . 135
10.2.2 Section Selection . 136
10.2.3 Matching Sections . 137

10.3 Refreshing Buffers . 139
10.4 Conventions . 140

10.4.1 Theming Faces . 140

Appendix A FAQ . 143
A.1 FAQ - How to . . . ? . 143

A.1.1 How to pronounce Magit? . 143
A.1.2 How to show git’s output? . 143
A.1.3 How to install the gitman info manual? 143
A.1.4 How to show diffs for gpg-encrypted files? 143
A.1.5 How does branching and pushing work? 144
A.1.6 Should I disable VC? . 144

A.2 FAQ - Issues and Errors . 144
A.2.1 Magit is slow . 144
A.2.2 I changed several thousand files at once and now Magit is

unusable . 144
A.2.3 I am having problems committing . 144
A.2.4 I am using MS Windows and cannot push with Magit . . . 144
A.2.5 I am using macOS and SOMETHING works in shell, but not

in Magit . 144
A.2.6 Expanding a file to show the diff causes it to disappear . . 145
A.2.7 Point is wrong in the COMMIT_EDITMSG buffer 145
A.2.8 The mode-line information isn’t always up-to-date 145
A.2.9 A branch and tag sharing the same name breaks

SOMETHING . 145
A.2.10 My Git hooks work on the command-line but not inside

Magit . 146

v

A.2.11 git-commit-mode isn’t used when committing from the
command-line . 146

A.2.12 Point ends up inside invisible text when jumping to a
file-visiting buffer . 147

A.2.13 I am no longer able to save popup defaults 147

11 Debugging Tools . 148

Appendix B Keystroke Index 150

Appendix C Function and Command Index . . 155

Appendix D Variable Index . 161

1

1 Introduction

Magit is an interface to the version control system Git, implemented as an Emacs package.
Magit aspires to be a complete Git porcelain. While we cannot (yet) claim that Magit
wraps and improves upon each and every Git command, it is complete enough to allow
even experienced Git users to perform almost all of their daily version control tasks directly
from within Emacs. While many fine Git clients exist, only Magit and Git itself deserve to
be called porcelains.

Staging and otherwise applying changes is one of the most important features in a Git
porcelain and here Magit outshines anything else, including Git itself. Git’s own staging
interface (git add --patch) is so cumbersome that many users only use it in exceptional
cases. In Magit staging a hunk or even just part of a hunk is as trivial as staging all changes
made to a file.

The most visible part of Magit’s interface is the status buffer, which displays information
about the current repository. Its content is created by running several Git commands and
making their output actionable. Among other things, it displays information about the
current branch, lists unpulled and unpushed changes and contains sections displaying the
staged and unstaged changes. That might sound noisy, but, since sections are collapsible,
it’s not.

To stage or unstage a change one places the cursor on the change and then types s or
u. The change can be a file or a hunk, or when the region is active (i.e., when there is a
selection) several files or hunks, or even just part of a hunk. The change or changes that
these commands - and many others - would act on are highlighted.

Magit also implements several other "apply variants" in addition to staging and un-
staging. One can discard or reverse a change, or apply it to the working tree. Git’s own
porcelain only supports this for staging and unstaging and you would have to do something
like git diff ... | ??? | git apply ... to discard, revert, or apply a single hunk on the
command line. In fact that’s exactly what Magit does internally (which is what lead to the
term "apply variants").

Magit isn’t just for Git experts, but it does assume some prior experience with Git as
well as Emacs. That being said, many users have reported that using Magit was what
finally taught them what Git is capable of and how to use it to its fullest. Other users
wished they had switched to Emacs sooner so that they would have gotten their hands on
Magit earlier.

While one has to know the basic features of Emacs to be able to make full use of
Magit, acquiring just enough Emacs skills doesn’t take long and is worth it, even for
users who prefer other editors. Vim users are advised to give Evil (https://github.
com/emacs-evil/evil), the "Extensible VI Layer for Emacs", and Spacemacs (https://
github.com/syl20bnr/spacemacs), an "Emacs starter-kit focused on Evil" a try.

Magit provides a consistent and efficient Git porcelain. After a short learning period,
you will be able to perform most of your daily version control tasks faster than you would
on the command line. You will likely also start using features that seemed too daunting in
the past.

Magit fully embraces Git. It exposes many advanced features using a simple but flexible
interface instead of only wrapping the trivial ones like many GUI clients do. Of course

https://github.com/emacs-evil/evil
https://github.com/emacs-evil/evil
https://github.com/syl20bnr/spacemacs
https://github.com/syl20bnr/spacemacs

Chapter 1: Introduction 2

Magit supports logging, cloning, pushing, and other commands that usually don’t fail in
spectacular ways; but it also supports tasks that often cannot be completed in a single
step. Magit fully supports tasks such as merging, rebasing, cherry-picking, reverting, and
blaming by not only providing a command to initiate these tasks but also by displaying
context sensitive information along the way and providing commands that are useful for
resolving conflicts and resuming the sequence after doing so.

Magit wraps and in many cases improves upon at least the following Git porcelain
commands: add, am, bisect, blame, branch, checkout, cherry, cherry-pick, clean,
clone, commit, config, describe, diff, fetch, format-patch, init, log, merge, merge-
tree, mv, notes, pull, rebase, reflog, remote, request-pull, reset, revert, rm, show,
stash, submodule, subtree, tag, and worktree. Many more Magit porcelain commands
are implemented on top of Git plumbing commands.

3

2 Installation

Magit can be installed using Emacs’ package manager or manually from its development
repository.

2.1 Installing from Melpa

Magit is available from Melpa and Melpa-Stable. If you haven’t used Emacs’ package man-
ager before, then it is high time you familiarize yourself with it by reading the documentation
in the Emacs manual, see Section “Packages” in emacs. Then add one of the archives to
package-archives:

• To use Melpa:

(require 'package)

(add-to-list 'package-archives

'("melpa" . "https://melpa.org/packages/") t)

• To use Melpa-Stable:

(require 'package)

(add-to-list 'package-archives

'("melpa-stable" . "https://stable.melpa.org/packages/") t)

Once you have added your preferred archive, you need to update the local package list
using:

M-x package-refresh-contents RET

Once you have done that, you can install Magit and its dependencies using:

M-x package-install RET magit RET

Now see Section 2.3 [Post-Installation Tasks], page 4.

2.2 Installing from the Git Repository

Magit depends on the compat, cond-let, llama, seq (the built-in version is enough when
using Emacs >= 29.1), transient and with-editor libraries which are available from
Melpa and Melpa-Stable. Install them using M-x package-install RET <package> RET.
Of course you may also install them manually from their repository.

Then clone the Magit repository:

$ git clone https://github.com/magit/magit.git ~/.emacs.d/site-lisp/magit

$ cd ~/.emacs.d/site-lisp/magit

Then compile the libraries and generate the info manuals:

$ make

If you haven’t installed compat, cond-let, llama, seq (only for Emacs 28), transient
and with-editor from Melpa, or at /path/to/magit/../<package>, then you have to tell
make where to find them. To do so create the file /path/to/magit/config.mk with the
following content before running make:

LOAD_PATH = -L ~/.emacs.d/site-lisp/magit/lisp

LOAD_PATH += -L ~/.emacs.d/site-lisp/compat

LOAD_PATH += -L ~/.emacs.d/site-lisp/cond-let

Chapter 2: Installation 4

LOAD_PATH += -L ~/.emacs.d/site-lisp/llama

LOAD_PATH += -L ~/.emacs.d/site-lisp/seq

LOAD_PATH += -L ~/.emacs.d/site-lisp/transient/lisp

LOAD_PATH += -L ~/.emacs.d/site-lisp/with-editor/lisp

Finally add this to your init file:

(add-to-list 'load-path "~/.emacs.d/site-lisp/magit/lisp")

(require 'magit)

(with-eval-after-load 'info

(info-initialize)

(add-to-list 'Info-directory-list "~/.emacs.d/site-lisp/magit/docs/"))

Of course if you installed the dependencies manually as well, then you have to tell Emacs
about them too, by prefixing the above with:

(add-to-list 'load-path "~/.emacs.d/site-lisp/compat")

(add-to-list 'load-path "~/.emacs.d/site-lisp/cond-let")

(add-to-list 'load-path "~/.emacs.d/site-lisp/llama")

(add-to-list 'load-path "~/.emacs.d/site-lisp/seq")

(add-to-list 'load-path "~/.emacs.d/site-lisp/transient/lisp")

(add-to-list 'load-path "~/.emacs.d/site-lisp/with-editor")

Note that you have to add the lisp subdirectory to the load-path, not the top-level of
the repository, and that elements of load-path should not end with a slash, while those of
Info-directory-list should.

Instead of requiring the feature magit, you could load just the autoload definitions, by
loading the file magit-autoloads.el.

(load "/path/to/magit/lisp/magit-autoloads")

Instead of running Magit directly from the repository by adding that to the load-path,
you might want to instead install it in some other directory using sudo make install and
setting load-path accordingly.

To update Magit use:

$ git pull

$ make

At times it might be necessary to run make clean all instead.

To view all available targets use make help.

Now see Section 2.3 [Post-Installation Tasks], page 4.

2.3 Post-Installation Tasks

After installing Magit you should verify that you are indeed using the Magit, Git, and
Emacs releases you think you are using. It’s best to restart Emacs before doing so, to make
sure you are not using an outdated value for load-path.

M-x magit-version RET

should display something like

Magit 2.8.0, Git 2.10.2, Emacs 25.1.1, gnu/linux

Chapter 2: Installation 5

Then you might also want to read about options that many users likely want to customize.
See Section 9.2 [Essential Settings], page 126.

To be able to follow cross references to Git manpages found in this manual, you might
also have to manually install the gitman info manual, or advice Info-follow-nearest-

node to instead open the actual manpage. See Section A.1.3 [How to install the gitman info
manual?], page 143.

If you are completely new to Magit then see Chapter 3 [Getting Started], page 6.

If you run into problems, then please see the Appendix A [FAQ], page 143. Also see the
Chapter 11 [Debugging Tools], page 148.

And last but not least please consider making a donation, to ensure that I can keep
working on Magit. See https://magit.vc/donate. for various donation options.

https://magit.vc/donate

6

3 Getting Started

This short tutorial describes the most essential features that many Magitians use on a daily
basis. It only scratches the surface but should be enough to get you started.

IMPORTANT: It is safest if you clone some repository just for this tutorial. Alternatively
you can use an existing local repository, but if you do that, then you should commit all
uncommitted changes before proceeding.

Type C-x g to display information about the current Git repository in a dedicated buffer,
called the status buffer.

Most Magit commands are commonly invoked from the status buffer. It can be consid-
ered the primary interface for interacting with Git using Magit. Many other Magit buffers
may exist at a given time, but they are often created from this buffer.

Depending on what state your repository is in, this buffer may contain sections titled
"Staged changes", "Unstaged changes", "Unmerged into origin/master", "Unpushed to
origin/master", and many others.

Since we are starting from a safe state, which you can easily return to (by doing a git

reset --hard PRE-MAGIT-STATE), there currently are no staged or unstaged changes. Edit
some files and save the changes. Then go back to the status buffer, while at the same time
refreshing it, by typing C-x g. (When the status buffer, or any Magit buffer for that matter,
is the current buffer, then you can also use just g to refresh it).

Move between sections using p and n. Note that the bodies of some sections are hidden.
Type TAB to expand or collapse the section at point. You can also use C-tab to cycle the
visibility of the current section and its children. Move to a file section inside the section
named "Unstaged changes" and type s to stage the changes you have made to that file.
That file now appears under "Staged changes".

Magit can stage and unstage individual hunks, not just complete files. Move to the file
you have just staged, expand it using TAB, move to one of the hunks using n, and unstage
just that by typing u. Note how the staging (s) and unstaging (u) commands operate on
the change at point. Many other commands behave the same way.

You can also un-/stage just part of a hunk. Inside the body of a hunk section (move there
using C-n), set the mark using C-SPC and move down until some added and/or removed
lines fall inside the region but not all of them. Again type s to stage.

It is also possible to un-/stage multiple files at once. Move to a file section, type C-SPC,
move to the next file using n, and then s to stage both files. Note that both the mark and
point have to be on the headings of sibling sections for this to work. If the region looks like
it does in other buffers, then it doesn’t select Magit sections that can be acted on as a unit.

And then of course you want to commit your changes. Type c. This shows the available
commit commands and arguments in a buffer at the bottom of the frame. Each command
and argument is prefixed with the key that invokes/sets it. Do not worry about this for
now. We want to create a "normal" commit, which is done by typing c again.

Now two new buffers appear. One is for writing the commit message, the other shows
a diff with the changes that you are about to commit. Write a message and then type C-c
C-c to actually create the commit.

Chapter 3: Getting Started 7

You probably don’t want to push the commit you just created because you just com-
mitted some random changes, but if that is not the case you could push it by typing P to
show all the available push commands and arguments and then p to push to a branch with
the same name as the local branch onto the remote configured as the push-remote. (If the
push-remote is not configured yet, then you would first be prompted for the remote to push
to.)

So far we have mentioned the commit and push menu commands. These are probably
among the menus you will be using the most, but many others exist. To show a menu
that lists all other menus (as well as the various apply commands and some other essential
commands), type h. Try a few. (Such menus are also called "transient prefix commands"
or just "transients".)

The key bindings in that menu correspond to the bindings in Magit buffers, including
but not limited to the status buffer. So you could type h d to bring up the diff menu, but
once you remember that "d" stands for "diff", you would usually do so by just typing d.

This "prefix of prefixes" is useful even once you have memorized all the bindings, as it
can provide easy access to Magit commands from non-Magit buffers. So, by default, it is
globally bound to C-x M-g.

A similar menu featuring (for the most part) commands that act on just the file being
visited in the current buffer, is globally bound to C-c M-g. That binding can also be used
in buffers, which do not visit a file, but then only a subset of the commands is available.

The global key bindings mentioned in the previous two paragraphs are quite inconvenient.
We recommend using C-c g and C-c f instead, but cannot use those key sequences by default
because they are strictly reserved for bindings added by the user. See Section 9.2.3 [Global
Bindings], page 129, if you want to explicitly opt-in to the recommended key bindings.

Magit also provides context menus and other mouse commands, see Section 4.6 [Mouse
Support], page 29.

It is not necessary that you do so now, but if you stick with Magit, then it is highly
recommended that you read the next section too.

8

4 Interface Concepts

4.1 Modes and Buffers

Magit provides several major-modes. For each of these modes there usually exists only one
buffer per repository. Separate modes and thus buffers exist for commits, diffs, logs, and
some other things.

Besides these special purpose buffers, there also exists an overview buffer, called the
status buffer. It’s usually from this buffer that the user invokes Git commands, or creates
or visits other buffers.

In this manual we often speak about "Magit buffers". By that we mean buffers whose
major-modes derive from magit-mode.

M-x magit-toggle-buffer-lock

This command locks the current buffer to its value or if the buffer is already
locked, then it unlocks it.

Locking a buffer to its value prevents it from being reused to display another
value. The name of a locked buffer contains its value, which allows telling it
apart from other locked buffers and the unlocked buffer.

Not all Magit buffers can be locked to their values; for example, it wouldn’t
make sense to lock a status buffer.

There can only be a single unlocked buffer using a certain major-mode per
repository. So when a buffer is being unlocked and another unlocked buffer
already exists for that mode and repository, then the former buffer is instead
deleted and the latter is displayed in its place.

4.1.1 Switching Buffers

[Function]magit-display-buffer buffer &optional display-function
This function is a wrapper around display-buffer and is used to display any Magit
buffer. It displays BUFFER in some window and, unlike display-buffer, also selects
that window, provided magit-display-buffer-noselect is nil. It also runs the
hooks mentioned below.

If optional DISPLAY-FUNCTION is non-nil, then that is used to display the buffer.
Usually that is nil and the function specified by magit-display-buffer-function

is used.

[Variable]magit-display-buffer-noselect
When this is non-nil, then magit-display-buffer only displays the buffer but for-
goes also selecting the window. This variable should not be set globally, it is only
intended to be let-bound, by code that automatically updates "the other window".
This is used for example when the revision buffer is updated when you move inside
the log buffer.

[User Option]magit-display-buffer-function
The function specified here is called by magit-display-buffer with one argument,
a buffer, to actually display that buffer. This function should call display-buffer
with that buffer as first and a list of display actions as second argument.

Chapter 4: Interface Concepts 9

Magit provides several functions, listed below, that are suitable values for this option.
If you want to use different rules, then a good way of doing that is to start with a
copy of one of these functions and then adjust it to your needs.

Instead of using a wrapper around display-buffer, that function itself can be
used here, in which case the display actions have to be specified by adding them
to display-buffer-alist instead.

To learn about display actions, see Section “Choosing Window” in elisp.

[Function]magit-display-buffer-traditional buffer
This function is the current default value of the option magit-display-buffer-

function. Before that option and this function were added, the behavior was hard-
coded in many places all over the code base but now all the rules are contained in
this one function (except for the "noselect" special case mentioned above).

[Function]magit-display-buffer-same-window-except-diff-v1
This function displays most buffers in the currently selected window. If a buffer’s
mode derives from magit-diff-mode or magit-process-mode, it is displayed in an-
other window.

[Function]magit-display-buffer-fullframe-status-v1
This function fills the entire frame when displaying a status buffer. Otherwise, it
behaves like magit-display-buffer-traditional.

[Function]magit-display-buffer-fullframe-status-topleft-v1
This function fills the entire frame when displaying a status buffer. It behaves like
magit-display-buffer-fullframe-status-v1 except that it displays buffers that
derive from magit-diff-mode or magit-process-mode to the top or left of the current
buffer rather than to the bottom or right. As a result, Magit buffers tend to pop up
on the same side as they would if magit-display-buffer-traditional were in use.

[Function]magit-display-buffer-fullcolumn-most-v1
This function displays most buffers so that they fill the entire height of the frame.
However, the buffer is displayed in another window if (1) the buffer’s mode derives
from magit-process-mode, or (2) the buffer’s mode derives from magit-diff-mode,
provided that the mode of the current buffer derives from magit-log-mode or magit-
cherry-mode.

[User Option]magit-pre-display-buffer-hook
This hook is run by magit-display-buffer before displaying the buffer.

[Function]magit-save-window-configuration
This function saves the current window configuration. Later when the buffer is buried,
it may be restored by magit-restore-window-configuration.

[User Option]magit-post-display-buffer-hook
This hook is run by magit-display-buffer after displaying the buffer.

Chapter 4: Interface Concepts 10

[Function]magit-maybe-set-dedicated
This function remembers if a new window had to be created to display the buffer, or
whether an existing window was reused. This information is later used by magit-

mode-quit-window, to determine whether the window should be deleted when its last
Magit buffer is buried.

4.1.2 Naming Buffers

[User Option]magit-generate-buffer-name-function
The function used to generate the names of Magit buffers.

Such a function should take the options magit-uniquify-buffer-names as well as
magit-buffer-name-format into account. If it doesn’t, then should be clearly stated
in the doc-string. And if it supports %-sequences beyond those mentioned in the
doc-string of the option magit-buffer-name-format, then its own doc-string should
describe the additions.

[Function]magit-generate-buffer-name-default-function mode
This function returns a buffer name suitable for a buffer whose major-mode is MODE
and which shows information about the repository in which default-directory is
located.

This function uses magit-buffer-name-format and supporting all of the %-sequences
mentioned the documentation of that option. It also respects the option magit-

uniquify-buffer-names.

[User Option]magit-buffer-name-format
The format string used to name Magit buffers.

At least the following %-sequences are supported:

• %m

The name of the major-mode, but with the -mode suffix removed.

• %M

Like %m but abbreviate magit-status-mode as magit.

• %v

The value the buffer is locked to, in parentheses, or an empty string if the buffer
is not locked to a value.

• %V

Like %v, but the string is prefixed with a space, unless it is an empty string.

• %t

The top-level directory of the working tree of the repository, or if
magit-uniquify-buffer-names is non-nil an abbreviation of that.

• %x

If magit-uniquify-buffer-names is nil "*", otherwise the empty string. Due
to limitations of the uniquify package, buffer names must end with the path.

The value should always contain %m or %M, %v or %V, and %t. If magit-uniquify-
buffer-names is non-nil, then the value must end with %t or %t%x. See issue #2841.

Chapter 4: Interface Concepts 11

[User Option]magit-uniquify-buffer-names
This option controls whether the names of Magit buffers are uniquified. If the names
are not being uniquified, then they contain the full path of the top-level of the working
tree of the corresponding repository. If they are being uniquified, then they end with
the basename of the top-level, or if that would conflict with the name used for other
buffers, then the names of all these buffers are adjusted until they no longer conflict.

This is done using the uniquify package; customize its options to control how buffer
names are uniquified.

4.1.3 Quitting Windows

q (magit-mode-bury-buffer)
This command buries or kills the current Magit buffer. The function specified
by option magit-bury-buffer-function is used to bury the buffer when called
without a prefix argument or to kill it when called with a single prefix argument.

When called with two or more prefix arguments then it always kills all Magit
buffers, associated with the current project, including the current buffer.

[User Option]magit-bury-buffer-function
The function used to actually bury or kill the current buffer.

magit-mode-bury-buffer calls this function with one argument. If the argument is
non-nil, then the function has to kill the current buffer. Otherwise it has to bury it
alive. The default value currently is magit-mode-quit-window.

[Function]magit-restore-window-configuration kill-buffer
Bury or kill the current buffer using quit-window, which is called with
KILL-BUFFER as first and the selected window as second argument.

Then restore the window configuration that existed right before the current buffer
was displayed in the selected frame. Unfortunately that also means that point gets
adjusted in all the buffers, which are being displayed in the selected frame.

[Function]magit-mode-quit-window kill-buffer
Bury or kill the current buffer using quit-window, which is called with
KILL-BUFFER as first and the selected window as second argument.

Then, if the window was originally created to display a Magit buffer and the buried
buffer was the last remaining Magit buffer that was ever displayed in the window,
then that is deleted.

4.1.4 Automatic Refreshing of Magit Buffers

After running a command which may change the state of the current repository, the current
Magit buffer and the corresponding status buffer are refreshed. The status buffer can be
automatically refreshed whenever a buffer is saved to a file inside the respective repository
by adding a hook, like so:

(with-eval-after-load 'magit-mode

(add-hook 'after-save-hook 'magit-after-save-refresh-status t))

Automatically refreshing Magit buffers ensures that the displayed information is up-to-
date most of the time but can lead to a noticeable delay in big repositories. Other Magit

Chapter 4: Interface Concepts 12

buffers are not refreshed to keep the delay to a minimum and also because doing so can
sometimes be undesirable.

Buffers can also be refreshed explicitly, which is useful in buffers that weren’t current
during the last refresh and after changes were made to the repository outside of Magit.

g (magit-refresh)
This command refreshes the current buffer if its major mode derives from
magit-mode as well as the corresponding status buffer.

If the option magit-revert-buffers calls for it, then it also reverts all unmod-
ified buffers that visit files being tracked in the current repository.

G (magit-refresh-all)
This command refreshes all Magit buffers belonging to the current repository
and also reverts all unmodified buffers that visit files being tracked in the current
repository.

The file-visiting buffers are always reverted, even if magit-revert-buffers is
nil.

[User Option]magit-refresh-buffer-hook
This hook is run in each Magit buffer that was refreshed during the current refresh -
normally the current buffer and the status buffer.

[User Option]magit-refresh-status-buffer
When this option is non-nil, then the status buffer is automatically refreshed after
running git for side-effects, in addition to the current Magit buffer, which is always
refreshed automatically.

Only set this to nil after exhausting all other options to improve performance.

[Function]magit-after-save-refresh-status
This function is intended to be added to after-save-hook. After doing that the
corresponding status buffer is refreshed whenever a buffer is saved to a file inside a
repository.

Note that refreshing a Magit buffer is done by re-creating its contents from scratch,
which can be slow in large repositories. If you are not satisfied with Magit’s perfor-
mance, then you should obviously not add this function to that hook.

4.1.5 Automatic Saving of File-Visiting Buffers

File-visiting buffers are by default saved at certain points in time. This doesn’t guarantee
that Magit buffers are always up-to-date, but, provided one only edits files by editing them
in Emacs and uses only Magit to interact with Git, one can be fairly confident. When in
doubt or after outside changes, type g (magit-refresh) to save and refresh explicitly.

[User Option]magit-save-repository-buffers
This option controls whether file-visiting buffers are saved before certain events.

If this is non-nil then all modified file-visiting buffers belonging to the current repos-
itory may be saved before running commands, before creating new Magit buffers, and
before explicitly refreshing such buffers. If this is dontask then this is done without
user intervention. If it is t then the user has to confirm each save.

Chapter 4: Interface Concepts 13

4.1.6 Automatic Reverting of File-Visiting Buffers

By default Magit automatically reverts buffers that are visiting files that are being tracked
in a Git repository, after they have changed on disk. When using Magit one often changes
files on disk by running Git, i.e., "outside Emacs", making this a rather important feature.

For example, if you discard a change in the status buffer, then that is done by running git
apply --reverse ..., and Emacs considers the file to have "changed on disk". If Magit
did not automatically revert the buffer, then you would have to type M-x revert-buffer

RET RET in the visiting buffer before you could continue making changes.

[User Option]magit-auto-revert-mode
When this mode is enabled, then buffers that visit tracked files are automatically
reverted after the visited files change on disk.

[User Option]global-auto-revert-mode
When this mode is enabled, then any file-visiting buffer is automatically reverted after
the visited file changes on disk.

If you like buffers that visit tracked files to be automatically reverted, then you might
also like any buffer to be reverted, not just those visiting tracked files. If that is the
case, then enable this mode instead of magit-auto-revert-mode.

[User Option]magit-auto-revert-immediately
This option controls whether Magit reverts buffers immediately.

If this is non-nil and either global-auto-revert-mode or magit-auto-revert-mode
is enabled, then Magit immediately reverts buffers by explicitly calling auto-revert-
buffers after running Git for side-effects.

If auto-revert-use-notify is non-nil (and file notifications are actually supported),
then magit-auto-revert-immediately does not have to be non-nil, because the
reverts happen immediately anyway.

If magit-auto-revert-immediately and auto-revert-use-notify are both nil,
then reverts happen after auto-revert-interval seconds of user inactivity. That is
not desirable.

[User Option]auto-revert-use-notify
This option controls whether file notification functions should be used. Note that
this variable unfortunately defaults to t even on systems on which file notifications
cannot be used.

[User Option]magit-auto-revert-tracked-only
This option controls whether magit-auto-revert-mode only reverts tracked files or
all files that are located inside Git repositories, including untracked files and files
located inside Git’s control directory.

[User Option]auto-revert-mode
The global mode magit-auto-revert-mode works by turning on this local mode in
the appropriate buffers (but global-auto-revert-mode is implemented differently).
You can also turn it on or off manually, which might be necessary if Magit does not
notice that a previously untracked file now is being tracked or vice-versa.

Chapter 4: Interface Concepts 14

[User Option]auto-revert-stop-on-user-input
This option controls whether the arrival of user input suspends the automatic reverts
for auto-revert-interval seconds.

[User Option]auto-revert-interval
This option controls how many seconds Emacs waits for before resuming suspended
reverts.

[User Option]auto-revert-buffer-list-filter
This option specifies an additional filter used by auto-revert-buffers to determine
whether a buffer should be reverted or not.

This option is provided by Magit, which also advises auto-revert-buffers to respect
it. Magit users who do not turn on the local mode auto-revert-mode themselves,
are best served by setting the value to magit-auto-revert-repository-buffer-p.

However the default is nil, so as not to disturb users who do use the local mode
directly. If you experience delays when running Magit commands, then you should
consider using one of the predicates provided by Magit - especially if you also use
Tramp.

Users who do turn on auto-revert-mode in buffers in which Magit doesn’t do that
for them, should likely not use any filter. Users who turn on global-auto-revert-

mode, do not have to worry about this option, because it is disregarded if the global
mode is enabled.

[User Option]auto-revert-verbose
This option controls whether Emacs reports when a buffer has been reverted.

The options with the auto-revert- prefix are located in the Custom group named
auto-revert. The other, Magit-specific, options are located in the magit group.

Risk of Reverting Automatically

For the vast majority of users, automatically reverting file-visiting buffers after they have
changed on disk is harmless.

If a buffer is modified (i.e., it contains changes that haven’t been saved yet), then Emacs
will refuse to automatically revert it. If you save a previously modified buffer, then that
results in what is seen by Git as an uncommitted change. Git will then refuse to carry
out any commands that would cause these changes to be lost. In other words, if there is
anything that could be lost, then either Git or Emacs will refuse to discard the changes.

However, if you use file-visiting buffers as a sort of ad hoc "staging area", then the
automatic reverts could potentially cause data loss. So far I have heard from only one user
who uses such a workflow.

An example: You visit some file in a buffer, edit it, and save the changes. Then, outside
of Emacs (or at least not using Magit or by saving the buffer) you change the file on disk
again. At this point the buffer is the only place where the intermediate version still exists.
You have saved the changes to disk, but that has since been overwritten. Meanwhile Emacs
considers the buffer to be unmodified (because you have not made any changes to it since
you last saved it to the visited file) and therefore would not object to it being automatically
reverted. At this point an Auto-Revert mode would kick in. It would check whether the

Chapter 4: Interface Concepts 15

buffer is modified and since that is not the case it would revert it. The intermediate version
would be lost. (Actually you could still get it back using the undo command.)

If your workflow depends on Emacs preserving the intermediate version in the buffer,
then you have to disable all Auto-Revert modes. But please consider that such a workflow
would be dangerous even without using an Auto-Revert mode, and should therefore be
avoided. If Emacs crashes or if you quit Emacs by mistake, then you would also lose the
buffer content. There would be no autosave file still containing the intermediate version
(because that was deleted when you saved the buffer) and you would not be asked whether
you want to save the buffer (because it isn’t modified).

4.2 Sections

Magit buffers are organized into nested sections, which can be collapsed and expanded,
similar to how sections are handled in Org mode. Each section also has a type, and some
sections also have a value. For each section type there can also be a local keymap, shared
by all sections of that type.

Taking advantage of the section value and type, many commands operate on the current
section, or when the region is active and selects sections of the same type, all of the selected
sections. Commands that only make sense for a particular section type (as opposed to just
behaving differently depending on the type) are usually bound in section type keymaps.

4.2.1 Section Movement

To move within a section use the usual keys (C-p, C-n, C-b, C-f etc), whose global bindings
are not shadowed. To move to another section use the following commands.

The section movement commands described here run the hook magit-section-

movement-hook. Note that they explicitly run that hook and that arbitrary other
movement, defined in Emacs and other packages, do not run that hook. That hook, and
hook functions that can be added to it, or are part of its default value, are described below.

p (magit-section-backward)
When not at the beginning of a section, then move to the beginning of the
current section. At the beginning of a section, instead move to the beginning
of the previous visible section.

n (magit-section-forward)
Move to the beginning of the next visible section.

M-p (magit-section-backward-siblings)
Move to the beginning of the previous sibling section. If there is no previous
sibling section, then move to the parent section instead.

M-n (magit-section-forward-siblings)
Move to the beginning of the next sibling section. If there is no next sibling
section, then move to the parent section instead.

^ (magit-section-up)
Move to the beginning of the parent of the current section.

The above commands all call the hook magit-section-movement-hook. Any of the
functions listed below can be used as members of this hook.

Chapter 4: Interface Concepts 16

You might want to remove some of the functions that Magit adds using add-hook. In
doing so you have to make sure you do not attempt to remove function that haven’t even
been added yet, for example:

(with-eval-after-load 'magit-diff

(remove-hook 'magit-section-movement-hook

'magit-hunk-set-window-start))

[Variable]magit-section-movement-hook
This hook is run by all of the above section movement commands, after arriving
at the destination. It is not run by arbitrary other movement commands (such as
next-line), which are provided by Emacs or third-party packages.

[Function]magit-hunk-set-window-start
This hook function ensures that the beginning of the current section is visible, pro-
vided it is a hunk section. Otherwise, it does nothing.

Loading magit-diff adds this function to the hook.

[Function]magit-section-set-window-start
This hook function ensures that the beginning of the current section is visible, regard-
less of the section’s type. If you add this to magit-section-movement-hook, then
you must remove the hunk-only variant in turn.

[Function]magit-log-maybe-show-more-commits
This hook function only has an effect in log buffers, and point is on the "show more"
section. If that is the case, then it doubles the number of commits that are being
shown.

Loading magit-log adds this function to the hook.

[Function]magit-log-maybe-update-revision-buffer
When moving inside a log buffer, then this function updates the revision buffer,
provided it is already being displayed in another window of the same frame.

Loading magit-log adds this function to the hook.

[Function]magit-log-maybe-update-blob-buffer
When moving inside a log buffer and another window of the same frame displays a
blob buffer, then this function instead displays the blob buffer for the commit at point
in that window.

[Function]magit-status-maybe-update-revision-buffer
When moving inside a status buffer, then this function updates the revision buffer,
provided it is already being displayed in another window of the same frame.

[Function]magit-status-maybe-update-stash-buffer
When moving inside a status buffer, then this function updates the stash buffer,
provided it is already being displayed in another window of the same frame.

[Function]magit-status-maybe-update-blob-buffer
When moving inside a status buffer and another window of the same frame displays
a blob buffer, then this function instead displays the blob buffer for the commit at
point in that window.

Chapter 4: Interface Concepts 17

[Function]magit-stashes-maybe-update-stash-buffer
When moving inside a buffer listing stashes, then this function updates the stash
buffer, provided it is already being displayed in another window of the same frame.

[User Option]magit-update-other-window-delay
Delay before automatically updating the other window.

When moving around in certain buffers using Magit’s own section movement com-
mands (but not other movement commands), then certain other buffers, which are
being displayed in another window, may optionally be updated to display information
about the section at point.

When holding down a key to move by more than just one section, then that would
update that buffer for each section on the way. To prevent that, updating the revision
buffer is delayed, and this option controls for how long. For optimal experience you
might have to adjust this delay and/or the keyboard repeat rate and delay of your
graphical environment or operating system.

4.2.2 Section Visibility

Magit provides many commands for changing the visibility of sections, but all you need to
get started are the next two.

TAB (magit-section-toggle)
Toggle the visibility of the body of the current section.

C-c TAB (magit-section-cycle)
C-<tab> (magit-section-cycle)

Cycle the visibility of current section and its children.

If this command is invoked using C-<tab> and that is globally bound to tab-

next, then this command pivots to behave like that command, and you must
instead use C-c TAB to cycle section visibility.

If you would like to keep using C-<tab> to cycle section visibility but also want
to use tab-bar-mode, then you have to prevent that mode from using this key
and instead bind another key to tab-next. Because tab-bar-mode does not
use a mode map but instead manipulates the global map, this involves advising
tab-bar--define-keys.

M-<tab> (magit-section-cycle-diffs)
Cycle the visibility of diff-related sections in the current buffer.

S-<tab> (magit-section-cycle-global)
Cycle the visibility of all sections in the current buffer.

1 (magit-section-show-level-1)
2 (magit-section-show-level-2)
3 (magit-section-show-level-3)
4 (magit-section-show-level-4)

Show sections surrounding the current section up to level N.

Chapter 4: Interface Concepts 18

M-1 (magit-section-show-level-1-all)
M-2 (magit-section-show-level-2-all)
M-3 (magit-section-show-level-3-all)
M-4 (magit-section-show-level-4-all)

Show all sections up to level N.

Some functions, which are used to implement the above commands, are also exposed
as commands themselves. By default no keys are bound to these commands, as they are
generally perceived to be much less useful. But your mileage may vary.

[Command]magit-section-show
Show the body of the current section.

[Command]magit-section-hide
Hide the body of the current section.

[Command]magit-section-show-headings
Recursively show headings of children of the current section. Only show the headings.
Previously shown text-only bodies are hidden.

[Command]magit-section-show-children
Recursively show the bodies of children of the current section. With a prefix argument
show children down to the level of the current section, and hide deeper children.

[Command]magit-section-hide-children
Recursively hide the bodies of children of the current section.

[Command]magit-section-toggle-children
Toggle visibility of bodies of children of the current section.

When a buffer is first created then some sections are shown expanded while others
are not. This is hard coded. When a buffer is refreshed then the previous visibility is
preserved. The initial visibility of certain sections can also be overwritten using the hook
magit-section-set-visibility-hook.

[User Option]magit-section-initial-visibility-alist
This options can be used to override the initial visibility of sections. In the future
it will also be used to define the defaults, but currently a section’s default is still
hardcoded.

The value is an alist. Each element maps a section type or lineage to the initial
visibility state for such sections. The state has to be one of show or hide, or a
function that returns one of these symbols. A function is called with the section as
the only argument.

Use the command magit-describe-section-briefly to determine a section’s lin-
eage or type. The vector in the output is the section lineage and the type is the first
element of that vector. Wildcards can be used, see magit-section-match.

[User Option]magit-section-cache-visibility
This option controls for which sections the previous visibility state should be restored
if a section disappears and later appears again. The value is a boolean or a list of

Chapter 4: Interface Concepts 19

section types. If t, then the visibility of all sections is cached. Otherwise this is only
done for sections whose type matches one of the listed types.

This requires that the function magit-section-cached-visibility is a member of
magit-section-set-visibility-hook.

[Variable]magit-section-set-visibility-hook
This hook is run when first creating a buffer and also when refreshing an existing
buffer, and is used to determine the visibility of the section currently being inserted.

Each function is called with one argument, the section being inserted. It should return
hide or show, or to leave the visibility undefined nil. If no function decides on the
visibility and the buffer is being refreshed, then the visibility is preserved; or if the
buffer is being created, then the hard coded default is used.

Usually this should only be used to set the initial visibility but not during refreshes.
If magit-insert-section--oldroot is non-nil, then the buffer is being refreshed
and these functions should immediately return nil.

[User Option]magit-section-visibility-indicators
This option controls whether and how to indicate that a section can be
expanded/collapsed.

If nil, then don’t show any indicators. Otherwise the value has to be a list with
two elements. The first controls the indicators used in graphical frames, the second
the indicators in terminal frames. For graphical frames all of the following forms are
valid, while terminal frames do not have fringes and thus do not support the first
form.

• (EXPANDABLE-BITMAP . COLLAPSIBLE-BITMAP)

Both values have to be variables whose values are fringe bitmaps. In this case
every section that can be expanded or collapsed gets an indicator in the left
fringe.

To provide extra padding around the indicator, set left-fringe-width in
magit-mode-hook, e.g.:

(add-hook 'magit-mode-hook

(lambda () (setq left-fringe-width 20)))

• (EXPANDABLE-CHAR . COLLAPSIBLE-CHAR)

In this case every section that can be expanded or collapsed gets an indicator in
the left margin.

• (STRING . BOOLEAN)

In this case STRING (usually an ellipsis) is shown at the end of the heading of
every collapsed section. Expanded sections get no indicator. The cdr controls
whether the appearance of these ellipsis take section highlighting into account.
Doing so might potentially have an impact on performance, while not doing so
is kinda ugly.

4.2.3 Section Hooks

Which sections are inserted into certain buffers is controlled with hooks. This includes
the status and the refs buffers. For other buffers, e.g., log and diff buffers, this is not

Chapter 4: Interface Concepts 20

possible. The command magit-describe-section can be used to see which hook (if any)
was responsible for inserting the section at point.

For buffers whose sections can be customized by the user, a hook variable called magit-

TYPE-sections-hook exists. This hook should be changed using magit-add-section-

hook. Avoid using add-hooks or the Custom interface.

The various available section hook variables are described later in this manual along
with the appropriate "section inserter functions".

[Function]magit-add-section-hook hook function &optional at append local
Add the function FUNCTION to the value of section hook HOOK.

Add FUNCTION at the beginning of the hook list unless optional APPEND is non-
nil, in which case FUNCTION is added at the end. If FUNCTION already is a
member then move it to the new location.

If optional AT is non-nil and a member of the hook list, then add FUNCTION next
to that instead. Add before or after AT, or replace AT with FUNCTION depending
on APPEND. If APPEND is the symbol replace, then replace AT with FUNCTION.
For any other non-nil value place FUNCTION right after AT. If nil, then place
FUNCTION right before AT. If FUNCTION already is a member of the list but AT
is not, then leave FUNCTION where ever it already is.

If optional LOCAL is non-nil, then modify the hook’s buffer-local value rather than
its global value. This makes the hook local by copying the default value. That copy
is then modified.

HOOK should be a symbol. If HOOK is void, it is first set to nil. HOOK’s value
must not be a single hook function. FUNCTION should be a function that takes
no arguments and inserts one or multiple sections at point, moving point forward.
FUNCTION may choose not to insert its section(s), when doing so would not make
sense. It should not be abused for other side-effects.

To remove a function from a section hook, use remove-hook.

4.2.4 Section Types and Values

Each section has a type, for example hunk, file, and commit. Instances of certain section
types also have a value. The value of a section of type file, for example, is a file name.

Users usually do not have to worry about a section’s type and value, but knowing them
can be handy at times.

H (magit-describe-section)
This command shows information about the section at point in a separate
buffer.

[Command]magit-describe-section-briefly
This command shows information about the section at point in the echo area, as
#<magit-section VALUE [TYPE PARENT-TYPE...] BEGINNING-END>.

Many commands behave differently depending on the type of the section at point and/or
somehow consume the value of that section. But that is only one of the reasons why the
same key may do something different, depending on what section is current.

Chapter 4: Interface Concepts 21

Additionally for each section type a keymap might be defined, named magit-TYPE-

section-map. That keymap is used as text property keymap of all text belonging to any
section of the respective type. If such a map does not exist for a certain type, then you can
define it yourself, and it will automatically be used.

4.2.5 Section Options

This section describes options that have an effect on more than just a certain type of
sections. As you can see there are not many of those.

[User Option]magit-section-show-child-count
Whether to append the number of children to section headings. This only affects
sections that could benefit from this information.

4.3 Transient Commands

Many Magit commands are implemented as transient commands. First the user invokes a
prefix command, which causes its infix arguments and suffix commands to be displayed in
the echo area. The user then optionally sets some infix arguments and finally invokes one
of the suffix commands.

This is implemented in the library transient. Earlier Magit releases used the package
magit-popup and even earlier versions library magit-key-mode.

Transient is documented in transient.

C-x M-g (magit-dispatch)
C-c g (magit-dispatch)

This transient prefix command binds most of Magit’s other prefix commands
as suffix commands and displays them in a temporary buffer until one of them
is invoked. Invoking such a sub-prefix causes the suffixes of that command to
be bound and displayed instead of those of magit-dispatch.

This command is also, or especially, useful outside Magit buffers, so Magit by
default binds it to C-c M-g in the global keymap. C-c g would be a better bind-
ing, but we cannot use that by default, because that key sequence is reserved for
the user. See Section 9.2.3 [Global Bindings], page 129, to learn more default
and recommended key bindings.

4.4 Transient Arguments and Buffer Variables

The infix arguments of many of Magit’s transient prefix commands cease to have an effect
once the git command that is called with those arguments has returned. Commands that
create a commit are a good example for this. If the user changes the arguments, then that
only affects the next invocation of a suffix command. If the same transient prefix command
is later invoked again, then the arguments are initially reset to the default value. This
default value can be set for the current Emacs session or saved permanently, see Section
“Saving Values” in transient. It is also possible to cycle through previously used sets of
arguments using C-M-p and C-M-n, see Section “Using History” in transient.

However the infix arguments of many other transient commands continue to have an
effect even after the git command that was called with those arguments has returned. The

Chapter 4: Interface Concepts 22

most important commands like this are those that display a diff or log in a dedicated buffer.
Their arguments obviously continue to have an effect for as long as the respective diff or
log is being displayed. Furthermore the used arguments are stored in buffer-local variables
for future reference.

For commands in the second group it isn’t always desirable to reset their arguments to
the global value when the transient prefix command is invoked again.

As mentioned above, it is possible to cycle through previously used sets of arguments
while a transient popup is visible. That means that we could always reset the infix arguments
to the default because the set of arguments that is active in the existing buffer is only a few
C-M-p away. Magit can be configured to behave like that, but because I expect that most
users would not find that very convenient, it is not the default.

Also note that it is possible to change the diff and log arguments used in the current
buffer (including the status buffer, which contains both diff and log sections) using the
respective "refresh" transient prefix commands on D and L. (d and l on the other hand are
intended to change what diff or log is being displayed. It is possible to also change how
the diff or log is being displayed at the same time, but if you only want to do the latter,
then you should use the refresh variants.) Because these secondary diff and log transient
prefixes are about changing the arguments used in the current buffer, they always start out
with the set of arguments that are currently in effect in that buffer.

Some commands are usually invoked directly even though they can also be invoked as
the suffix of a transient prefix command. Most prominently magit-show-commit is usually
invoked by typing RET while point is on a commit in a log, but it can also be invoked from
the magit-diff transient prefix.

When such a command is invoked directly, then it is important to reuse the arguments
as specified by the respective buffer-local values, instead of using the default arguments.
Imagine you press RET in a log to display the commit at point in a different buffer and then
use D to change how the diff is displayed in that buffer. And then you press RET on another
commit to show that instead and the diff arguments are reset to the default. Not cool; so
Magit does not do that by default.

[User Option]magit-prefix-use-buffer-arguments
This option controls whether the infix arguments initially shown in certain transient
prefix commands are based on the arguments that are currently in effect in the buffer
that their suffixes update.

The magit-diff and magit-log transient prefix commands are affected by this op-
tion.

[User Option]magit-direct-use-buffer-arguments
This option controls whether certain commands, when invoked directly (i.e., not as
the suffix of a transient prefix command), use the arguments that are currently active
in the buffer that they are about to update. The alternative is to use the default
value for these arguments, which might change the arguments that are used in the
buffer.

Valid values for both of the above options are:

• always: Always use the set of arguments that is currently active in the respective
buffer, provided that buffer exists of course.

Chapter 4: Interface Concepts 23

• selected or t: Use the set of arguments from the respective buffer, but only if it is
displayed in a window of the current frame. This is the default for both variables.

• current: Use the set of arguments from the respective buffer, but only if it is the
current buffer.

• never: Never use the set of arguments from the respective buffer.

I am afraid it gets more complicated still:

• The global diff and log arguments are set for each supported mode individually. The diff
arguments for example have different values in magit-diff-mode, magit-revision-
mode, magit-merge-preview-mode and magit-status-mode buffers. Setting or saving
the value for one mode does not change the value for other modes. The history however
is shared.

• When magit-show-commit is invoked directly from a log buffer, then the file filter
is picked up from that buffer, not from the revision buffer or the mode’s global diff
arguments.

• Even though they are suffixes of the diff prefix magit-show-commit and magit-stash-

show do not use the diff buffer used by the diff commands, instead they use the dedicated
revision and stash buffers.

At the time you invoke the diff prefix it is unknown to Magit which of the suffix
commands you are going to invoke. While not certain, more often than not users
invoke one of the commands that use the diff buffer, so the initial infix arguments are
those used in that buffer. However if you invoke one of these commands directly, then
Magit knows that it should use the arguments from the revision resp. stash buffer.

• The log prefix also features reflog commands, but these commands do not use the log
arguments.

• If magit-show-refs is invoked from a magit-refs-mode buffer, then it acts as a refresh
prefix and therefore unconditionally uses the buffer’s arguments as initial arguments.
If it is invoked elsewhere with a prefix argument, then it acts as regular prefix and
therefore respects magit-prefix-use-buffer-arguments. If it is invoked elsewhere
without a prefix argument, then it acts as a direct command and therefore respects
magit-direct-use-buffer-arguments.

4.5 Completion, Confirmation and the Selection

4.5.1 Action Confirmation

By default many actions that could potentially lead to data loss have to be confirmed. This
includes many very common actions, so this can quickly become annoying. Many of these
actions can be undone and if you have thought about how to undo certain mistakes, then
it should be safe to disable confirmation for the respective actions.

The option magit-no-confirm can be used to tell Magit to perform certain actions
without the user having to confirm them. Note that while this option can only be used to
disable confirmation for a specific set of actions, the next section explains another way of
telling Magit to ask fewer questions.

Chapter 4: Interface Concepts 24

[User Option]magit-no-confirm
The value of this option is a list of symbols, representing actions that do not have to
be confirmed by the user before being carried out.

By default many potentially dangerous commands ask the user for confirmation. Each
of the below symbols stands for an action which, when invoked unintentionally or
without being fully aware of the consequences, could lead to tears. In many cases
there are several commands that perform variations of a certain action, so we don’t
use the command names but more generic symbols.

• Applying changes:

• discard Discarding one or more changes (i.e., hunks or the complete diff for
a file) loses that change, obviously.

• reverse Reverting one or more changes can usually be undone by reverting
the reversion.

• stage-all-changes, unstage-all-changes When there are both staged
and unstaged changes, then un-/staging everything would destroy that dis-
tinction. Of course that also applies when un-/staging a single change, but
then less is lost and one does that so often that having to confirm every time
would be unacceptable.

• Files:

• delete When a file that isn’t yet tracked by Git is deleted, then it is com-
pletely lost, not just the last changes. Very dangerous.

• trash Instead of deleting a file it can also be move to the system trash.
Obviously much less dangerous than deleting it.

Also see option magit-delete-by-moving-to-trash.

• resurrect A deleted file can easily be resurrected by "deleting" the deletion,
which is done using the same command that was used to delete the same file
in the first place.

• untrack Untracking a file can be undone by tracking it again.

• rename Renaming a file can easily be undone.

• Sequences:

• reset-bisect Aborting (known to Git as "resetting") a bisect operation
loses all information collected so far.

• abort-cherry-pick Aborting a cherry-pick throws away all conflict resolu-
tions which have already been carried out by the user.

• abort-revert Aborting a revert throws away all conflict resolutions which
have already been carried out by the user.

• abort-rebase Aborting a rebase throws away all already modified commits,
but it’s possible to restore those from the reflog.

• abort-merge Aborting a merge throws away all conflict resolutions which
have already been carried out by the user.

• merge-dirty Merging with a dirty worktree can make it hard to go back to
the state before the merge was initiated.

Chapter 4: Interface Concepts 25

• References:

• delete-unmerged-branch Once a branch has been deleted, it can only be
restored using low-level recovery tools provided by Git. And even then the
reflog is gone. The user always has to confirm the deletion of a branch
by accepting the default choice (or selecting another branch), but when a
branch has not been merged yet, also make sure the user is aware of that.

• delete-pr-remote When deleting a branch that was created from a pull-
request and if no other branches still exist on that remote, then magit-

branch-delete offers to delete the remote as well. This should be safe
because it only happens if no other refs exist in the remotes namespace, and
you can recreate the remote if necessary.

• drop-stashes Dropping a stash is dangerous because Git stores stashes in
the reflog. Once a stash is removed, there is no going back without using
low-level recovery tools provided by Git. When a single stash is dropped,
then the user always has to confirm by accepting the default (or selecting
another). This action only concerns the deletion of multiple stashes at once.

• Publishing:

• set-and-push When pushing to the upstream or the push-remote and that
isn’t actually configured yet, then the user can first set the target. If s/he
confirms the default too quickly, then s/he might end up pushing to the
wrong branch and if the remote repository is configured to disallow fixing
such mistakes, then that can be quite embarrassing and annoying.

• Edit published history:

Without adding these symbols here, you will be warned before editing commits
that have already been pushed to one of the branches listed in magit-published-

branches.

• amend-published Affects most commands that amend to "HEAD".

• rebase-publishedAffects commands that perform interactive rebases. This
includes commands from the commit transient that modify a commit other
than "HEAD", namely the various fixup and squash variants.

• edit-published Affects the commands magit-edit-line-commit and
magit-diff-edit-hunk-commit. These two commands make it quite easy
to accidentally edit a published commit, so you should think twice before
configuring them not to ask for confirmation.

To disable confirmation completely, add all three symbols here or set magit-

published-branches to nil.

• Various:

• stash-apply-3way When a stash cannot be applied using git stash apply,
then Magit uses git apply instead, possibly using the --3way argument,
which isn’t always perfectly safe. See also magit-stash-apply.

• kill-process There seldom is a reason to kill a process.

• Global settings:

Instead of adding all of the above symbols to the value of this option, you can also
set it to the atom ‘t’, which has the same effect as adding all of the above symbols.

Chapter 4: Interface Concepts 26

Doing that most certainly is a bad idea, especially because other symbols might
be added in the future. So even if you don’t want to be asked for confirmation for
any of these actions, you are still better of adding all of the respective symbols
individually.

When magit-wip-before-change-mode is enabled, then the following actions
can be undone fairly easily: discard, reverse, stage-all-changes, and
unstage-all-changes. If and only if this mode is enabled, then safe-with-wip

has the same effect as adding all of these symbols individually.

4.5.2 Completion and Confirmation

Many Magit commands ask the user to select from a list of possible things to act on, while
offering the most likely choice as the default. For many of these commands the default is
the thing at point, provided that it actually is a valid thing to act on. For many commands
that act on a branch, the current branch serves as the default if there is no branch at point.

These commands combine asking for confirmation and asking for a target to act on into
a single action. The user can confirm the default target using RET or abort using C-g. This
is similar to a y-or-n-p prompt, but the keys to confirm or abort differ.

At the same time the user is also given the opportunity to select another target, which
is useful because for some commands and/or in some situations you might want to select
the action before selecting the target by moving to it.

However you might find that for some commands you always want to use the default
target, if any, or even that you want the command to act on the default without requiring
any confirmation at all. The option magit-dwim-selection can be used to configure certain
commands to that effect.

Note that when the region is active then many commands act on the things that are
selected using a mechanism based on the region, in many cases after asking for confirmation.
This region-based mechanism is called the "selection" and is described in detail in the next
section. When a selection exists that is valid for the invoked command, then that command
never offers to act on something else, and whether it asks for confirmation is not controlled
by this option.

Also note that Magit asks for confirmation of certain actions that are not coupled with
completion (or the selection). Such dialogs are also not affected by this option and are
described in the previous section.

[User Option]magit-dwim-selection
This option can be used to tell certain commands to use the thing at point instead of

asking the user to select a candidate to act on, with or without confirmation.

The value has the form ((COMMAND nil|PROMPT DEFAULT)...).

• COMMAND is the command that should not prompt for a choice. To have an effect,
the command has to use the function magit-completing-read or a utility function
which in turn uses that function.

• If the command uses magit-completing-read multiple times, then PROMPT can be
used to only affect one of these uses. PROMPT, if non-nil, is a regular expression that
is used to match against the PROMPT argument passed to magit-completing-read.

Chapter 4: Interface Concepts 27

• DEFAULT specifies how to use the default. If it is t, then the DEFAULT argument
passed to magit-completing-read is used without confirmation. If it is ask, then the
user is given a chance to abort. DEFAULT can also be nil, in which case the entry
has no effect.

4.5.3 The Selection

If the region is active, then many Magit commands act on the things that are selected
using a mechanism based on the region instead of one single thing. When the region is not
active, then these commands act on the thing at point or read a single thing to act on.
This is described in the previous section — this section only covers how multiple things are
selected, how that is visualized, and how certain commands behave when that is the case.

Magit’s mechanism for selecting multiple things, or rather sections that represent these
things, is based on the Emacs region, but the area that Magit considers to be selected is
typically larger than the region and additional restrictions apply.

Magit makes a distinction between a region that qualifies as forming a valid Magit
selection and a region that does not. If the region does not qualify, then it is displayed as it
is in other Emacs buffers. If the region does qualify as a Magit selection, then the selection
is always visualized, while the region itself is only visualized if it begins and ends on the
same line.

For a region to qualify as a Magit selection, it must begin in the heading of one section
and end in the heading of a sibling section. Note that if the end of the region is at the
very beginning of section heading (i.e., at the very beginning of a line) then that section is
considered to be inside the selection.

This is not consistent with how the region is normally treated in Emacs — if the region
ends at the beginning of a line, then that line is outside the region. Due to how Magit
visualizes the selection, it should be obvious that this difference exists.

Not every command acts on every valid selection. Some commands do not even consider
the location of point, others may act on the section at point but not support acting on the
selection, and even commands that do support the selection of course only do so if it selects
things that they can act on.

This is the main reason why the selection must include the section at point. Even if a
selection exists, the invoked command may disregard it, in which case it may act on the
current section only. It is much safer to only act on the current section but not the other
selected sections than it is to act on the current section instead of the selected sections.
The latter would be much more surprising and if the current section always is part of the
selection, then that cannot happen.

[Variable]magit-keep-region-overlay
This variable controls whether the region is visualized as usual even when a valid
Magit selection or a hunk-internal region exists. See the doc-string for more informa-
tion.

4.5.4 The hunk-internal region

Somewhat related to the Magit selection described in the previous section is the hunk-
internal region.

Chapter 4: Interface Concepts 28

Like the selection, the hunk-internal region is based on the Emacs region but causes that
region to not be visualized as it would in other Emacs buffers, and includes the line on
which the region ends even if it ends at the very beginning of that line.

Unlike the selection, which is based on a region that must begin in the heading of one
section and ends in the section of a sibling section, the hunk-internal region must begin
inside the body of a hunk section and end in the body of the same section.

The hunk-internal region is honored by "apply" commands, which can, among other
targets, act on a hunk. If the hunk-internal region is active, then such commands act only
on the marked part of the hunk instead of on the complete hunk.

4.5.5 Support for Completion Frameworks

The built-in option completing-read-function specifies the low-level function used
by completing-read to ask a user to select from a list of choices. Its default value
is completing-read-default. Alternative completion frameworks typically activate
themselves by substituting their own implementation.

Mostly for historic reasons Magit provides a similar option named magit-completing-

read-function, which only controls the low-level function used by magit-completing-

read. This option also makes it possible to use a different completing mechanism for Magit
than for the rest of Emacs, but doing that is not recommend.

You most likely don’t have to customize the magit-specific option to use an alternative
completion framework. For example, if you enable ivy-mode, then Magit will respect that,
and if you enable helm-mode, then you are done too.

[User Option]magit-completing-read-function
The value of this variable is the low-level function used to perform completion by code
that uses magit-completing-read (as opposed to the built-in completing-read).

The default value, magit-builtin-completing-read, is suitable for the standard
completion mechanism, ivy-mode, and helm-mode at least.

The built-in completing-read and completing-read-default are not suitable to
be used here. magit-builtin-completing-read performs some additional work,
and any function used in its place has to do the same.

[Function]magit-builtin-completing-read prompt choices &optional
predicate require-match initial-input hist def

This function performs completion using the built-in completing-read and does some
additional magit-specific work.

[Function]magit-completing-read prompt choices &optional predicate
require-match initial-input hist def fallback

This is the function that Magit commands use when they need the user to select a
single thing to act on. The arguments have the same meaning as for completing-

read, except for FALLBACK, which is unique to this function and is described below.

Instead of asking the user to choose from a list of possible candidates, this func-
tion may just return the default specified by DEF, with or without requiring user
confirmation. Whether that is the case depends on PROMPT, this-command and
magit-dwim-selection. See the documentation of the latter for more information.

Chapter 4: Interface Concepts 29

If it does read a value in the minibuffer, then this function acts similar to completing-
read, except for the following:

• COLLECTION must be a list of choices. A function is not supported.

• If REQUIRE-MATCH is nil and the user exits without a choice, then nil is
returned instead of an empty string.

• If REQUIRE-MATCH is any, then do not require a match but do require non-
empty input (or non-nil DEFAULT, since that is substituted for empty input).

• If REQUIRE-MATCH is non-nil and the users exits without a choice, an user-
error is raised.

• FALLBACK specifies a secondary default that is only used if the primary default
DEF is nil. The secondary default is not subject to magit-dwim-selection —
if DEF is nil but FALLBACK is not, then this function always asks the user to
choose a candidate, just as if both defaults were nil.

• format-prompt is called on PROMPT and DEF (or FALLBACK if DEF is nil).
This appends ": " to the prompt and may also add the default to the prompt, us-
ing the format specified by minibuffer-default-prompt-format and depending
on magit-completing-read-default-prompt-predicate.

4.5.6 Additional Completion Options

[User Option]magit-list-refs-sortby
For many commands that read a ref or refs from the user, the value of this option can
be used to control the order of the refs. Valid values include any key accepted by the
--sort flag of git for-each-ref. By default, refs are sorted alphabetically by their
full name (e.g., "refs/heads/master").

4.6 Mouse Support

Double clicking on a section heading toggles the visibility of its body, if any. Likewise
clicking in the left fringe toggles the visibility of the appropriate section.

A context menu is provided but has to be enabled explicitly. In Emacs 28 and greater,
enable the global mode context-menu-mode. If you use an older Emacs release, set magit-
section-show-context-menu-for-emacs<28.

4.7 Running Git

4.7.1 Viewing Git Output

Magit runs Git either for side-effects (e.g., when pushing) or to get some value (e.g., the
name of the current branch).

When Git is run for side-effects, the process output is logged in a per-repository log
buffer, which can be consulted using the magit-process-buffer command, when things
don’t go as expected.

The output/errors for up to magit-process-log-max Git commands are retained.

$ (magit-process-buffer)
This commands displays the process buffer for the current repository.

Chapter 4: Interface Concepts 30

Inside that buffer, the usual key bindings for navigating and showing sections are avail-
able. There is one additional command.

k (magit-process-kill)
This command kills the process represented by the section at point.

M-x magit-toggle-git-debug

This command toggles whether additional git errors are reported.

Magit basically calls git for one of these two reasons: for side-effects or to do
something with its standard output.

When git is run for side-effects then its output, including error messages, go
into the process buffer which is shown when using $.

When git’s output is consumed in some way, then it would be too expensive
to also insert it into this buffer, but with this command that can be enabled
temporarily. In that case, if git returns with a non-zero exit status, then at
least its standard error is inserted into this buffer.

Also note that just because git exits with a non-zero status and prints an
error message, that usually doesn’t mean that it is an error as far as Magit
is concerned, which is another reason we usually hide these error messages.
Whether some error message is relevant in the context of some unexpected
behavior has to be judged on a case by case basis.

4.7.2 Git Process Status

When a Git process is running for side-effects, Magit displays an indicator in the mode line,
using the magit-mode-line-process face.

If the Git process exits successfully, the process indicator is removed from the mode line
immediately.

In the case of a Git error, the process indicator is not removed, but is instead highlighted
with the magit-mode-line-process-error face, and the error details from the process
buffer are provided as a tooltip for mouse users. This error indicator persists in the mode
line until the next magit buffer refresh.

If you do not wish process errors to be indicated in the mode line, set magit-process-
display-mode-line-error to nil.

Process errors are displayed at the top of the status buffer and in the echo area. In
both places a hint is appended, which informs users that they can see the full output in the
process buffer and how to display that buffer. However, once you are aware of that, you
might want to set magit-show-process-buffer-hint to nil.

4.7.3 Running Git Manually

While Magit provides many Emacs commands to interact with Git, it does not cover ev-
erything. In those cases your existing Git knowledge will come in handy. Magit provides
some commands for running arbitrary Git commands by typing them into the minibuffer,
instead of having to switch to a shell.

! (magit-run)
This transient prefix command binds the following suffix commands and dis-
plays them in a temporary buffer until a suffix is invoked.

Chapter 4: Interface Concepts 31

! ! (magit-git-command-topdir)
This command reads a command from the user and executes it in the top-level
directory of the current working tree.

The string "git " is used as initial input when prompting the user for the
command. It can be removed to run another command.

: (magit-git-command)
! p This command reads a command from the user and executes it in default-

directory. With a prefix argument the command is executed in the top-level
directory of the current working tree instead.

The string "git " is used as initial input when prompting the user for the
command. It can be removed to run another command.

! s (magit-shell-command-topdir)
This command reads a command from the user and executes it in the top-level
directory of the current working tree.

! S (magit-shell-command)
This command reads a command from the user and executes it in default-

directory. With a prefix argument the command is executed in the top-level
directory of the current working tree instead.

[User Option]magit-shell-command-verbose-prompt
Whether the prompt, used by the above commands when reading a shell command,
shows the directory in which it will be run.

These suffix commands start external gui tools.

! k (magit-run-gitk)
This command runs gitk in the current repository.

! a (magit-run-gitk-all)
This command runs gitk --all in the current repository.

! b (magit-run-gitk-branches)
This command runs gitk --branches in the current repository.

! g (magit-run-git-gui)
This command runs git gui in the current repository.

! m (magit-git-mergetool)
This command runs ‘git mergetool --gui’ in the current repository.

With a prefix argument this acts as a transient prefix command, allowing the
user to select the mergetool and change some settings.

4.7.4 Git Executable

When Magit calls Git, then it may do so using the absolute path to the git executable, or
using just its name.

When running git locally and the system-type is windows-nt (any Windows version)
or darwin (macOS) then magit-git-executable is set to an absolute path when Magit is
loaded.

Chapter 4: Interface Concepts 32

On Windows it is necessary to use an absolute path because Git comes with several
wrapper scripts for the actual git binary, which are also placed on $PATH, and using one of
these wrappers instead of the binary would degrade performance horribly. For some macOS
users using just the name of the executable also performs horribly, so we avoid doing that
on that platform as well. On other platforms, using just the name seems to work just fine.

Using an absolute path when running git on a remote machine over Tramp, would be
problematic to use an absolute path that is suitable on the local machine, so a separate
option is used to control the name or path that is used on remote machines.

[User Option]magit-git-executable
The git executable used by Magit on the local host. This should be either the
absolute path to the executable, or the string "git" to let Emacs find the executable
itself, using the standard mechanism for doing such things.

[User Option]magit-remote-git-executable
The git executable used by Magit on remote machines over Tramp. Normally this
should be just the string "git". Consider customizing tramp-remote-path instead of
this option.

If Emacs is unable to find the correct executable, then you can work around that by
explicitly setting the value of one of these two options. Doing that should be considered
a kludge; it is better to make sure that the order in exec-path or tramp-remote-path is
correct.

Note that exec-path is set based on the value of the PATH environment variable that is
in effect when Emacs is started. If you set PATH in your shell’s init files, then that only has
an effect on Emacs if you start it from that shell (because the environment of a process is
only passed to its child processes, not to arbitrary other processes). If that is not how you
start Emacs, then the exec-path-from-shell package can help; though honestly I consider
that a kludge too.

The command magit-debug-git-executable can be useful to find out where Emacs is
searching for git.

M-x magit-debug-git-executable

This command displays a buffer with information about magit-git-

executable and magit-remote-git-executable.

M-x magit-version

This command shows the currently used versions of Magit, Git, and Emacs in
the echo area. Non-interactively this just returns the Magit version.

4.7.5 Global Git Arguments

[User Option]magit-git-global-arguments
The arguments set here are used every time the git executable is run as a subprocess.
They are placed right after the executable itself and before the git command - as in
git HERE... COMMAND REST. For valid arguments see the git(1) manpage.

Be careful what you add here, especially if you are using Tramp to connect to servers
with ancient Git versions. Never remove anything that is part of the default value,
unless you really know what you are doing. And think very hard before adding
something; it will be used every time Magit runs Git for any purpose.

33

5 Inspecting

The functionality provided by Magit can be roughly divided into three groups: inspecting
existing data, manipulating existing data or adding new data, and transferring data. Of
course that is a rather crude distinction that often falls short, but it’s more useful than
no distinction at all. This section is concerned with inspecting data, the next two with
manipulating and transferring it. Then follows a section about miscellaneous functionality,
which cannot easily be fit into this distinction.

Of course other distinctions make sense too, e.g., Git’s distinction between porcelain and
plumbing commands, which for the most part is equivalent to Emacs’ distinction between
interactive commands and non-interactive functions. All of the sections mentioned before
are mainly concerned with the porcelain – Magit’s plumbing layer is described later.

5.1 Status Buffer

While other Magit buffers contain, e.g., one particular diff or one particular log, the status
buffer contains the diffs for staged and unstaged changes, logs for unpushed and unpulled
commits, lists of stashes and untracked files, and information related to the current branch.

During certain incomplete operations – for example when a merge resulted in a conflict
– additional information is displayed that helps proceeding with or aborting the operation.

The command magit-status displays the status buffer belonging to the current repos-
itory in another window. This command is used so often that it should be bound globally.
We recommend using C-x g:

(global-set-key (kbd "C-x g") 'magit-status)

C-x g (magit-status)
When invoked from within an existing Git repository, then this command shows
the status of that repository in a buffer.

If the current directory isn’t located within a Git repository, then this com-
mand prompts for an existing repository or an arbitrary directory, depending
on the option magit-repository-directories, and the status for the selected
repository is shown instead.

• If that option specifies any existing repositories, then the user is asked to
select one of them.

• Otherwise the user is asked to select an arbitrary directory using regular
file-name completion. If the selected directory is the top-level directory of
an existing working tree, then the status buffer for that is shown.

• Otherwise the user is offered to initialize the selected directory as a new
repository. After creating the repository its status buffer is shown.

These fallback behaviors can also be forced using one or more prefix arguments:

• With two prefix arguments (or more precisely a numeric prefix value of
16 or greater) an arbitrary directory is read, which is then acted on as
described above. The same could be accomplished using the command
magit-init.

Chapter 5: Inspecting 34

• With a single prefix argument an existing repository is read from the user,
or if no repository can be found based on the value of magit-repository-
directories, then the behavior is the same as with two prefix arguments.

[User Option]magit-repository-directories
List of directories that are Git repositories or contain Git repositories.

Each element has the form (DIRECTORY . DEPTH). DIRECTORY has to be a directory
or a directory file-name, a string. DEPTH, an integer, specifies the maximum depth
to look for Git repositories. If it is 0, then only add DIRECTORY itself.

This option controls which repositories are being listed by magit-list-

repositories. It also affects magit-status (which see) in potentially surprising
ways (see above).

[Command]magit-status-quick
This command is an alternative to magit-status that usually avoids refreshing the
status buffer.

If the status buffer of the current Git repository exists but isn’t being displayed in
the selected frame, then it is displayed without being refreshed.

If the status buffer is being displayed in the selected frame, then this command
refreshes it.

Prefix arguments have the same meaning as for magit-status, and additionally cause
the buffer to be refresh.

To use this command add this to your init file:

(global-set-key (kbd "C-x g") 'magit-status-quick).

If you do that and then for once want to redisplay the buffer and also immediately
refresh it, then type C-x g followed by g.

A possible alternative command is magit-display-repository-buffer. It supports
displaying any existing Magit buffer that belongs to the current repository; not just
the status buffer.

5.1.1 Status Sections

The contents of status buffers is controlled using the hook magit-status-sections-hook.
See Section 4.2.3 [Section Hooks], page 19, to learn about such hooks and how to customize
them.

[User Option]magit-status-sections-hook
This hook is run to insert sections into a status buffer.

The functions described in this section, and the functions magit-insert-status-

headers and magit-insert-untracked-files, which are described in subsequent
sections, are members of this hook.

Some additional functions that can be added to this hook, but are by default added
to another hooks, are listed in Section 5.6 [References Buffer], page 57.

[Function]magit-insert-status-headers
Insert header sections appropriate for magit-status-mode buffers. The sections are
inserted by running the functions on the hook magit-status-headers-hook. See
Section 5.1.4 [Status Header Sections], page 37.

Chapter 5: Inspecting 35

[Function]magit-insert-merge-log
Insert section for the on-going merge. Display the heads that are being merged. If
no merge is in progress, do nothing.

[Function]magit-insert-rebase-sequence
Insert section for the on-going rebase sequence. If no such sequence is in progress, do
nothing.

[Function]magit-insert-am-sequence
Insert section for the on-going patch applying sequence. If no such sequence is in
progress, do nothing.

[Function]magit-insert-sequencer-sequence
Insert section for the on-going cherry-pick or revert sequence. If no such sequence is
in progress, do nothing.

[Function]magit-insert-bisect-output
While bisecting, insert section with output from git bisect.

[Function]magit-insert-bisect-rest
While bisecting, insert section visualizing the bisect state.

[Function]magit-insert-bisect-log
While bisecting, insert section logging bisect progress.

[Function]magit-insert-unstaged-changes
Insert section showing unstaged changes.

[Function]magit-insert-staged-changes
Insert section showing staged changes.

[Function]magit-insert-stashes &optional ref heading
Insert the stashes section showing reflog for "refs/stash". If optional REF is non-nil
show reflog for that instead. If optional HEADING is non-nil use that as section
heading instead of "Stashes:".

[Function]magit-insert-unpulled-from-upstream
Insert section showing commits that haven’t been pulled from the upstream branch
yet.

[Function]magit-insert-unpulled-from-pushremote
Insert section showing commits that haven’t been pulled from the push-remote branch
yet.

[Function]magit-insert-unpushed-to-upstream-or-recent
Insert section showing unpushed or other recent commits. If an upstream is configured
for the current branch and it is behind of the current branch, then show the commits
that have not yet been pushed into the upstream branch. If no upstream is configured
or if the upstream is not behind of the current branch, then show the last magit-

log-section-commit-count commits.

Chapter 5: Inspecting 36

[Function]magit-insert-unpushed-to-upstream
Insert section showing commits that haven’t been pushed to the upstream yet.

[Function]magit-insert-unpushed-to-pushremote
Insert section showing commits that haven’t been pushed to the push-remote yet.

5.1.2 Status File List Sections

These functions honor the buffer’s file filter, which can be set using D - -.

[Function]magit-insert-untracked-files
This function may insert a list of untracked files. Whether it actually does so, depends
on the option described next.

[User Option]magit-status-show-untracked-files
This option controls whether the above function inserts a list of untracked files in the
status buffer.

• If nil, do not list any untracked files.

• If t, list untracked files, but if a directory does not contain any tracked files, then
only list that directory, not the contained untracked files.

• If all, then list each individual untracked files. This is can be very slow and is
discouraged.

The corresponding values for the Git variable are "no", "normal" and "all".

To disable listing untracked files in a specific repository only, add the following to
.dir-locals.el:

((magit-status-mode

(magit-status-show-untracked-files . "no")))

Alternatively (and mostly for historic reasons), it is possible to use git config to set
the repository-local value:

git config set --local status.showUntrackedFiles no

This does not override the (if any) local value of this Lisp variable, but it does override
its global value.

See the last section in the git-status(1) manpage, to speed up the part of the work
Git is responsible for. Turning that list into sections is also not free, so Magit only
lists magit-status-file-list-limit files.

[User Option]magit-status-file-list-limit
This option controls many files are listed at most in each section that lists files in the
status buffer. For performance reasons, it is recommended that you do not increase
this limit.

While the above function is a member of magit-status-section-hook by default, the
following functions have to be explicitly added by the user. Because that negatively affects
performance, it is recommended that you don’t do that.

[Function]magit-insert-tracked-files
Insert a list of tracked files.

Chapter 5: Inspecting 37

[Function]magit-insert-ignored-files
Insert a list of ignored files.

[Function]magit-insert-skip-worktree-files
Insert a list of skip-worktree files.

[Function]magit-insert-assume-unchanged-files
Insert a list of files that are assumed to be unchanged.

5.1.3 Status Log Sections

[Function]magit-insert-unpulled-or-recent-commits
Insert section showing unpulled or recent commits. If an upstream is configured for
the current branch and it is ahead of the current branch, then show the missing
commits. Otherwise, show the last magit-log-section-commit-count commits.

[Function]magit-insert-recent-commits
Insert section showing the last magit-log-section-commit-count commits.

[User Option]magit-log-section-commit-count
How many recent commits magit-insert-recent-commits and magit-insert-

unpulled-or-recent-commits (provided there are no unpulled commits)
show.

[Function]magit-insert-unpulled-cherries
Insert section showing unpulled commits. Like magit-insert-unpulled-commits

but prefix each commit that has not been applied yet (i.e., a commit with a patch-id
not shared with any local commit) with "+", and all others with "-".

[Function]magit-insert-unpushed-cherries
Insert section showing unpushed commits. Like magit-insert-unpushed-commits

but prefix each commit which has not been applied to upstream yet (i.e., a commit
with a patch-id not shared with any upstream commit) with "+" and all others with
"-".

5.1.4 Status Header Sections

The contents of status buffers is controlled using the hook magit-status-sections-hook

(see Section 5.1.1 [Status Sections], page 34).

By default magit-insert-status-headers is the first member of that hook variable.

[Function]magit-insert-status-headers
Insert headers sections appropriate for magit-status-mode buffers. The sections are
inserted by running the functions on the hook magit-status-headers-hook.

[User Option]magit-status-headers-hook
Hook run to insert headers sections into the status buffer.

This hook is run by magit-insert-status-headers, which in turn has to be a mem-
ber of magit-status-sections-hook to be used at all.

By default the following functions are members of the above hook:

Chapter 5: Inspecting 38

[Function]magit-insert-error-header
Insert a header line showing the message about the Git error that just occurred.

This function is only aware of the last error that occur when Git was run for side-
effects. If, for example, an error occurs while generating a diff, then that error won’t
be inserted. Refreshing the status buffer causes this section to disappear again.

[Function]magit-insert-diff-filter-header
Insert a header line showing the effective diff filters.

[Function]magit-insert-head-branch-header
Insert a header line about the current branch or detached HEAD.

[Function]magit-insert-upstream-branch-header
Insert a header line about the branch that is usually pulled into the current branch.

[Function]magit-insert-push-branch-header
Insert a header line about the branch that the current branch is usually pushed to.

[Function]magit-insert-tags-header
Insert a header line about the current and/or next tag, along with the number of
commits between the tag and HEAD.

The following functions can also be added to the above hook:

[Function]magit-insert-repo-header
Insert a header line showing the path to the repository top-level.

[Function]magit-insert-remote-header
Insert a header line about the remote of the current branch.

If no remote is configured for the current branch, then fall back showing the "origin"
remote, or if that does not exist the first remote in alphabetic order.

[Function]magit-insert-user-header
Insert a header line about the current user.

5.1.5 Status Module Sections

The contents of status buffers is controlled using the hook magit-status-sections-hook

(see Section 5.1.1 [Status Sections], page 34).

By default magit-insert-modules is not a member of that hook variable.

[Function]magit-insert-modules
Insert submodule sections.

Hook magit-module-sections-hook controls which module sections are inserted,
and option magit-module-sections-nested controls whether they are wrapped in
an additional section.

[User Option]magit-module-sections-hook
Hook run by magit-insert-modules.

Chapter 5: Inspecting 39

[User Option]magit-module-sections-nested
This option controls whether magit-insert-modules wraps inserted sections in an
additional section.

If this is non-nil, then only a single top-level section is inserted. If it is nil, then all
sections listed in magit-module-sections-hook become top-level sections.

[Function]magit-insert-modules-overview
Insert sections for all submodules. For each section insert the path, the branch, and
the output of git describe --tags, or, failing that, the abbreviated HEAD commit
hash.

Press RET on such a submodule section to show its own status buffer. Press RET on
the "Modules" section to display a list of submodules in a separate buffer. This shows
additional information not displayed in the super-repository’s status buffer.

[Function]magit-insert-modules-unpulled-from-upstream
Insert sections for modules that haven’t been pulled from the upstream yet. These
sections can be expanded to show the respective commits.

[Function]magit-insert-modules-unpulled-from-pushremote
Insert sections for modules that haven’t been pulled from the push-remote yet. These
sections can be expanded to show the respective commits.

[Function]magit-insert-modules-unpushed-to-upstream
Insert sections for modules that haven’t been pushed to the upstream yet. These
sections can be expanded to show the respective commits.

[Function]magit-insert-modules-unpushed-to-pushremote
Insert sections for modules that haven’t been pushed to the push-remote yet. These
sections can be expanded to show the respective commits.

5.1.6 Status Options

[User Option]magit-status-margin
This option specifies whether the margin is initially shown in Magit-Status mode
buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

• If INIT is non-nil, then the margin is shown initially.

• STYLE controls how to format the author or committer date. It can be one of
age (to show the age of the commit), age-abbreviated (to abbreviate the time
unit to a character), or a string (suitable for format-time-string) to show the
actual date. Option magit-log-margin-show-committer-date controls which
date is being displayed.

• WIDTH controls the width of the margin. This exists for forward compatibility
and currently the value should not be changed.

• AUTHOR controls whether the name of the author is also shown by default.

• AUTHOR-WIDTH has to be an integer. When the name of the author is shown,
then this specifies how much space is used to do so.

Also see the proceeding section for more options concerning status buffers.

Chapter 5: Inspecting 40

5.2 Repository List

[Command]magit-list-repositories
This command displays a list of repositories in a separate buffer.

The option magit-repository-directories controls which repositories are
displayed.

[User Option]magit-repolist-columns
This option controls what columns are displayed by the command magit-list-

repositories and how they are displayed.

Each element has the form (HEADER WIDTH FORMAT PROPS).

HEADER is the string displayed in the header. WIDTH is the width of the column.
FORMAT is a function that is called with one argument, the repository identification
(usually its basename), and with default-directory bound to the toplevel of its
working tree. It has to return a string to be inserted or nil. PROPS is an alist that
supports the keys :right-align, :pad-right and :sort.

The :sort function has a weird interface described in the docstring of tabulated-
list--get-sort. Alternatively < and magit-repolist-version< can be used as
those functions are automatically replaced with functions that satisfy the interface.
Set :sort to nil to inhibit sorting; if unspecified, then the column is sortable using
the default sorter.

You may wish to display a range of numeric columns using just one character per
column and without any padding between columns, in which case you should use an
appropriate HEADER, set WIDTH to 1, and set :pad-right to 9. + is substituted
for numbers higher than 9.

The following functions can be added to the above option:

[Function]magit-repolist-column-ident
This function inserts the identification of the repository. Usually this is just its
basename.

[Function]magit-repolist-column-path
This function inserts the absolute path of the repository.

[Function]magit-repolist-column-version
This function inserts a description of the repository’s HEAD revision.

[Function]magit-repolist-column-branch
This function inserts the name of the current branch.

[Function]magit-repolist-column-upstream
This function inserts the name of the upstream branch of the current branch.

[Function]magit-repolist-column-branches
This function inserts the number of branches.

[Function]magit-repolist-column-stashes
This function inserts the number of stashes.

Chapter 5: Inspecting 41

[Function]magit-repolist-column-flag
This function inserts a flag as specified by magit-repolist-column-flag-alist.

By default this indicates whether there are uncommitted changes.

• N if there is at least one untracked file.

• U if there is at least one unstaged file.

• S if there is at least one staged file.

Only the first one of these that applies is shown.

[Function]magit-repolist-column-flags
This functions insert all flags as specified by magit-repolist-column-flag-alist.

This is an alternative to function magit-repolist-column-flag, which only lists the
first one found.

[Function]magit-repolist-column-unpulled-from-upstream
This function inserts the number of upstream commits not in the current branch.

[Function]magit-repolist-column-unpulled-from-pushremote
This function inserts the number of commits in the push branch but not the current
branch.

[Function]magit-repolist-column-unpushed-to-upstream
This function inserts the number of commits in the current branch but not its up-
stream.

[Function]magit-repolist-column-unpushed-to-pushremote
This function inserts the number of commits in the current branch but not its push
branch.

The following commands are available in repolist buffers:

RET (magit-repolist-status)
This command shows the status for the repository at point.

m (magit-repolist-mark)
This command marks the repository at point.

u (magit-repolist-unmark)
This command unmarks the repository at point.

f (magit-repolist-fetch)
This command fetches all marked repositories. If no repositories are marked,
then it offers to fetch all displayed repositories.

5 (magit-repolist-find-file-other-frame)
This command reads a relative file-name (without completion) and opens the
respective file in each marked repository in a new frame. If no repositories are
marked, then it offers to do this for all displayed repositories.

Chapter 5: Inspecting 42

5.3 Logging

The status buffer contains logs for the unpushed and unpulled commits, but that obvi-
ously isn’t enough. The transient prefix command magit-log, on l, features several suffix
commands, which show a specific log in a separate log buffer.

Like other transient prefix commands, magit-log also features several infix arguments
that can be changed before invoking one of the suffix commands. However, in the case of
the log transient, these arguments may be taken from those currently in use in the current
repository’s log buffer, depending on the value of magit-prefix-use-buffer-arguments
(see Section 4.4 [Transient Arguments and Buffer Variables], page 21).

For information about the various arguments, see the git-log(1) manpage. The switch
++order=VALUE is converted to one of --author-date-order, --date-order, or --topo-
order before being passed to git log.

The log transient also features several reflog commands. See Section 5.3.5 [Reflog],
page 47.

l (magit-log)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

l l (magit-log-current)
Show log for the current branch. When HEAD is detached or with a prefix
argument, show log for one or more revs read from the minibuffer.

l h (magit-log-head)
Show log for HEAD.

l u (magit-log-related)
Show log for the current branch, its upstream and its push target. When the
upstream is a local branch, then also show its own upstream. When HEAD is
detached, then show log for that, the previously checked out branch and its
upstream and push-target.

l o (magit-log-other)
Show log for one or more revs read from the minibuffer. The user can input any
revision or revisions separated by a space, or even ranges, but only branches,
tags, and a representation of the commit at point are available as completion
candidates.

l L (magit-log-branches)
Show log for all local branches and HEAD.

l b (magit-log-all-branches)
Show log for all local and remote branches and HEAD.

l a (magit-log-all)
Show log for all references and HEAD.

Two additional commands that show the log for the file or blob that is being visited in
the current buffer exists, see Section 8.10 [Commands for Buffers Visiting Files], page 120.
The command magit-cherry also shows a log, see Section 5.3.6 [Cherries], page 47.

Chapter 5: Inspecting 43

5.3.1 Refreshing Logs

The transient prefix command magit-log-refresh, on L, can be used to change the log
arguments used in the current buffer, without changing which log is shown. This works in
dedicated log buffers, but also in the status buffer.

L (magit-log-refresh)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

L g (magit-log-refresh)
This suffix command sets the local log arguments for the current buffer.

L s (magit-log-set-default-arguments)
This suffix command sets the default log arguments for buffers of the same type
as that of the current buffer. Other existing buffers of the same type are not
affected because their local values have already been initialized.

L w (magit-log-save-default-arguments)
This suffix command sets the default log arguments for buffers of the same
type as that of the current buffer, and saves the value for future sessions. Other
existing buffers of the same type are not affected because their local values have
already been initialized.

L L (magit-toggle-margin)
Show or hide the margin.

5.3.2 Log Buffer

L (magit-log-refresh)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

See Section 5.3.1 [Refreshing Logs], page 43.

q (magit-log-bury-buffer)
Bury the current buffer or the revision buffer in the same frame. Like magit-

mode-bury-buffer (which see) but with a negative prefix argument instead
bury the revision buffer, provided it is displayed in the current frame.

C-c C-b (magit-go-backward)
Move backward in current buffer’s history.

C-c C-f (magit-go-forward)
Move forward in current buffer’s history.

C-c C-n (magit-log-move-to-parent)
Move to a parent of the current commit. By default, this is the first parent,
but a numeric prefix can be used to specify another parent.

j (magit-log-move-to-revision)
Read a revision and move to it in current log buffer.

Chapter 5: Inspecting 44

If the chosen reference or revision isn’t being displayed in the current log buffer,
then inform the user about that and do nothing else.

If invoked outside any log buffer, then display the log buffer of the current
repository first; creating it if necessary.

SPC (magit-diff-show-or-scroll-up)
Update the commit or diff buffer for the thing at point.

Either show the commit or stash at point in the appropriate buffer, or if that
buffer is already being displayed in the current frame and contains information
about that commit or stash, then instead scroll the buffer up. If there is no
commit or stash at point, then prompt for a commit.

DEL (magit-diff-show-or-scroll-down)
Update the commit or diff buffer for the thing at point.

Either show the commit or stash at point in the appropriate buffer, or if that
buffer is already being displayed in the current frame and contains information
about that commit or stash, then instead scroll the buffer down. If there is no
commit or stash at point, then prompt for a commit.

= (magit-log-toggle-commit-limit)
Toggle the number of commits the current log buffer is limited to. If the number
of commits is currently limited, then remove that limit. Otherwise set it to 256.

+ (magit-log-double-commit-limit)
Double the number of commits the current log buffer is limited to.

- (magit-log-half-commit-limit)
Half the number of commits the current log buffer is limited to.

[User Option]magit-log-auto-more
Insert more log entries automatically when moving past the last entry. Only consid-
ered when moving past the last entry with magit-goto-*-section commands.

[User Option]magit-log-show-refname-after-summary
Whether to show the refnames after the commit summaries. This is useful if you use
really long branch names.

[User Option]magit-log-show-color-graph-limit
When showing more commits than specified by this option, then the --color ar-
gument, if specified, is silently dropped. This is necessary because the ansi-color

library, which is used to turn control sequences into faces, is just too slow.

[User Option]magit-log-show-signatures-limit
When showing more commits than specified by this option, then the --show-

signature argument, if specified, is silently dropped. This is necessary because
checking the signature of a large number of commits is just too slow.

Magit displays references in logs a bit differently from how Git does it.

Local branches are blue and remote branches are green. Of course that depends on the
used theme, as do the colors used for other types of references. The current branch has a
box around it, as do remote branches that are their respective remote’s HEAD branch.

Chapter 5: Inspecting 45

If a local branch and its push-target point at the same commit, then their names are
combined to preserve space and to make that relationship visible. For example:

origin/feature

[green][blue-]

instead of

feature origin/feature

[blue-] [green-------]

Also note that while the transient features the --show-signature argument, that won’t
actually be used when enabled, because Magit defaults to use just one line per commit.
Instead the commit colorized to indicate the validity of the signed commit object, using the
faces named magit-signature-* (which see).

For a description of magit-log-margin see Section 5.3.3 [Log Margin], page 45.

5.3.3 Log Margin

In buffers which show one or more logs, it is possible to show additional information about
each commit in the margin. The options used to configure the margin are named magit-

INFIX-margin, where INFIX is the same as in the respective major-mode magit-INFIX-

mode. In regular log buffers that would be magit-log-margin.

[User Option]magit-log-margin
This option specifies whether the margin is initially shown in Magit-Log mode buffers
and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

• If INIT is non-nil, then the margin is shown initially.

• STYLE controls how to format the author or committer date. It can be one of
age (to show the age of the commit), age-abbreviated (to abbreviate the time
unit to a character), or a string (suitable for format-time-string) to show the
actual date. Option magit-log-margin-show-committer-date controls which
date is being displayed.

• WIDTH controls the width of the margin. This exists for forward compatibility
and currently the value should not be changed.

• AUTHOR controls whether the name of the author is also shown by default.

• AUTHOR-WIDTH has to be an integer. When the name of the author is shown,
then this specifies how much space is used to do so.

You can change the STYLE and AUTHOR-WIDTH of all magit-INFIX-margin options
to the same values by customizing magit-log-margin before magit is loaded. If you do
that, then the respective values for the other options will default to what you have set for
that variable. Likewise if you set INIT in magit-log-margin to nil, then that is used in
the default of all other options. But setting it to t, i.e. re-enforcing the default for that
option, does not carry to other options.

[User Option]magit-log-margin-show-committer-date
This option specifies whether to show the committer date in the margin. This option
only controls whether the committer date is displayed instead of the author date.

Chapter 5: Inspecting 46

Whether some date is displayed in the margin and whether the margin is displayed
at all is controlled by other options.

L (magit-margin-settings)
This transient prefix command binds the following suffix commands, each of
which changes the appearance of the margin in some way.

In some buffers that support the margin, L is instead bound to magit-log-refresh, but
that transient features the same commands, and then some other unrelated commands.

L L (magit-toggle-margin)
This command shows or hides the margin.

L l (magit-cycle-margin-style)
This command cycles the style used for the margin.

L d (magit-toggle-margin-details)
This command shows or hides details in the margin.

5.3.4 Select from Log

When the user has to select a recent commit that is reachable from HEAD, using regu-
lar completion would be inconvenient (because most humans cannot remember hashes or
"HEAD~5", at least not without double checking). Instead a log buffer is used to select the
commit, which has the advantage that commits are presented in order and with the commit
message.

Such selection logs are used when selecting the beginning of a rebase and when selecting
the commit to be squashed into.

In addition to the key bindings available in all log buffers, the following additional key
bindings are available in selection log buffers:

C-c C-c (magit-log-select-pick)
Select the commit at point and act on it. Call magit-log-select-pick-

function with the selected commit as argument.

C-c C-k (magit-log-select-quit)
Abort selecting a commit, don’t act on any commit.

[User Option]magit-log-select-margin
This option specifies whether the margin is initially shown in Magit-Log-Select mode
buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

• If INIT is non-nil, then the margin is shown initially.

• STYLE controls how to format the author or committer date. It can be one of
age (to show the age of the commit), age-abbreviated (to abbreviate the time
unit to a character), or a string (suitable for format-time-string) to show the
actual date. Option magit-log-margin-show-committer-date controls which
date is being displayed.

• WIDTH controls the width of the margin. This exists for forward compatibility
and currently the value should not be changed.

Chapter 5: Inspecting 47

• AUTHOR controls whether the name of the author is also shown by default.

• AUTHOR-WIDTH has to be an integer. When the name of the author is shown,
then this specifies how much space is used to do so.

5.3.5 Reflog

Also see the git-reflog(1) manpage.

These reflog commands are available from the log transient. See Section 5.3 [Logging],
page 42.

l r (magit-reflog-current)
Display the reflog of the current branch.

l O (magit-reflog-other)
Display the reflog of a branch or another ref.

l H (magit-reflog-head)
Display the HEAD reflog.

[User Option]magit-reflog-margin
This option specifies whether the margin is initially shown in Magit-Reflog mode
buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

• If INIT is non-nil, then the margin is shown initially.

• STYLE controls how to format the author or committer date. It can be one of
age (to show the age of the commit), age-abbreviated (to abbreviate the time
unit to a character), or a string (suitable for format-time-string) to show the
actual date. Option magit-log-margin-show-committer-date controls which
date is being displayed.

• WIDTH controls the width of the margin. This exists for forward compatibility
and currently the value should not be changed.

• AUTHOR controls whether the name of the author is also shown by default.

• AUTHOR-WIDTH has to be an integer. When the name of the author is shown,
then this specifies how much space is used to do so.

5.3.6 Cherries

Cherries are commits that haven’t been applied upstream (yet), and are usually visualized
using a log. Each commit is prefixed with - if it has an equivalent in the upstream and +

if it does not, i.e., if it is a cherry.

The command magit-cherry shows cherries for a single branch, but the references buffer
(see Section 5.6 [References Buffer], page 57) can show cherries for multiple "upstreams" at
once.

Also see the git-reflog(1) manpage.

Y (magit-cherry)
Show commits that are in a certain branch but that have not been merged in
the upstream branch.

Chapter 5: Inspecting 48

[User Option]magit-cherry-margin
This option specifies whether the margin is initially shown in Magit-Cherry mode
buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

• If INIT is non-nil, then the margin is shown initially.

• STYLE controls how to format the author or committer date. It can be one of
age (to show the age of the commit), age-abbreviated (to abbreviate the time
unit to a character), or a string (suitable for format-time-string) to show the
actual date. Option magit-log-margin-show-committer-date controls which
date is being displayed.

• WIDTH controls the width of the margin. This exists for forward compatibility
and currently the value should not be changed.

• AUTHOR controls whether the name of the author is also shown by default.

• AUTHOR-WIDTH has to be an integer. When the name of the author is shown,
then this specifies how much space is used to do so.

5.4 Diffing

The status buffer contains diffs for the staged and unstaged commits, but that obviously
isn’t enough. The transient prefix command magit-diff, on d, features several suffix
commands, which show a specific diff in a separate diff buffer.

Like other transient prefix commands, magit-diff also features several infix arguments
that can be changed before invoking one of the suffix commands. However, in the case of
the diff transient, these arguments may be taken from those currently in use in the current
repository’s diff buffer, depending on the value of magit-prefix-use-buffer-arguments
(see Section 4.4 [Transient Arguments and Buffer Variables], page 21).

Also see the git-diff(1) manpage.

d (magit-diff)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

d d (magit-diff-dwim)
Show changes for the thing at point.

For example, if point is on a commit, show the changes introduced by that
commit. Likewise if point is on the section titled "Unstaged changes", then
show those changes in a separate buffer. Generally speaking, compare the thing
at point with the most logical, trivial and (in any situation) at least potentially
useful other thing it could be compared to.

When the region selects commits, then compare the two commits at either end.
There are different ways two commits can be compared. In the buffer showing
the diff, you can control how the comparison, is done, using "D r" and "D f".

This function does not always show the changes that you might want to view in
any given situation. You can think of the changes being shown as the smallest
common denominator. There is no AI involved. If this command never does

Chapter 5: Inspecting 49

what you want, then ignore it, and instead use the commands that allow you
to explicitly specify what you need.

d r (magit-diff-range)
Show differences between two commits.

RANGE should be a range (A..B or A. . .B) but can also be a single commit.
If one side of the range is omitted, then it defaults to HEAD. If just a commit is
given, then changes in the working tree relative to that commit are shown.

If the region is active, use the revisions on the first and last line of the region.
With a prefix argument, instead of diffing the revisions, choose a revision to
view changes along, starting at the common ancestor of both revisions (i.e., use
a ". . ." range).

d w (magit-diff-working-tree)
Show changes between the current working tree and the HEAD commit. With
a prefix argument show changes between the working tree and a commit read
from the minibuffer.

d s (magit-diff-staged)
Show changes between the index and the HEAD commit. With a prefix argument
show changes between the index and a commit read from the minibuffer.

d u (magit-diff-unstaged)
Show changes between the working tree and the index.

d p (magit-diff-paths)
Show changes between any two files on disk.

All of the above suffix commands update the repository’s diff buffer. The diff transient
also features two commands which show differences in another buffer:

d c (magit-show-commit)
Show the commit at point. If there is no commit at point or with a prefix
argument, prompt for a commit.

d t (magit-stash-show)
Show all diffs of a stash in a buffer.

Two additional commands that show the diff for the file or blob that is being visited in
the current buffer exists, see Section 8.10 [Commands for Buffers Visiting Files], page 120.

5.4.1 Refreshing Diffs

The transient prefix command magit-diff-refresh, on D, can be used to change the diff
arguments used in the current buffer, without changing which diff is shown. This works in
dedicated diff buffers, but also in the status buffer.

(There is one exception; diff arguments cannot be changed in buffers created by magit-

merge-preview because the underlying Git command does not support these arguments.)

D (magit-diff-refresh)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

Chapter 5: Inspecting 50

D g (magit-diff-refresh)
This suffix command sets the local diff arguments for the current buffer.

D s (magit-diff-set-default-arguments)
This suffix command sets the default diff arguments for buffers of the same type
as that of the current buffer. Other existing buffers of the same type are not
affected because their local values have already been initialized.

D w (magit-diff-save-default-arguments)
This suffix command sets the default diff arguments for buffers of the same
type as that of the current buffer, and saves the value for future sessions. Other
existing buffers of the same type are not affected because their local values have
already been initialized.

D t (magit-diff-toggle-refine-hunk)
This command toggles hunk refinement on or off.

D r (magit-diff-switch-range-type)
This command converts the diff range type from "revA..revB" to
"revB. . . revA", or vice versa.

D f (magit-diff-flip-revs)
This command swaps revisions in the diff range from "revA..revB" to
"revB..revA", or vice versa.

D F (magit-diff-toggle-file-filter)
This command toggles the file restriction of the diffs in the current buffer,
allowing you to quickly switch between viewing all the changes in the commit
and the restricted subset. As a special case, when this command is called from
a log buffer, it toggles the file restriction in the repository’s revision buffer,
which is useful when you display a revision from a log buffer that is restricted
to a file or files.

In addition to the above transient, which allows changing any of the supported argu-
ments, there also exist some commands that change only a particular argument.

- (magit-diff-less-context)
This command decreases the context for diff hunks by COUNT lines.

+ (magit-diff-more-context)
This command increases the context for diff hunks by COUNT lines.

0 (magit-diff-default-context)
This command resets the context for diff hunks to the default height.

The following commands quickly change what diff is being displayed without having to
using one of the diff transient.

C-c C-d (magit-diff-while-committing)
While committing, this command shows the changes that are about to be com-
mitted. While amending, invoking the command again toggles between showing
just the new changes or all the changes that will be committed.

This binding is available in the diff buffer as well as the commit message buffer.

Chapter 5: Inspecting 51

C-c C-b (magit-go-backward)
This command moves backward in current buffer’s history.

C-c C-f (magit-go-forward)
This command moves forward in current buffer’s history.

5.4.2 Commands Available in Diffs

Some commands are only available if point is inside a diff.

magit-diff-visit-file and related commands visit the appropriate version of the file
that the diff at point is about. Likewise magit-diff-visit-worktree-file and related
commands visit the worktree version of the file that the diff at point is about. See Sec-
tion 5.8.2 [Visiting Files and Blobs from a Diff], page 62, for more information and the key
bindings.

C-c C-t (magit-diff-trace-definition)
This command shows a log for the definition at point.

[User Option]magit-log-trace-definition-function
The function specified by this option is used by magit-log-trace-definition to
determine the function at point. For major-modes that have special needs, you could
set the local value using the mode’s hook.

C-c C-e (magit-diff-edit-hunk-commit)
From a hunk, this command edits the respective commit and visits the file.

First it visits the file being modified by the hunk at the correct location using
magit-diff-visit-file. This actually visits a blob. When point is on a diff
header, not within an individual hunk, then this visits the blob the first hunk
is about.

Then it invokes magit-edit-line-commit, which uses an interactive rebase to
make the commit editable, or if that is not possible because the commit is not
reachable from HEAD by checking out that commit directly. This also causes the
actual worktree file to be visited.

Neither the blob nor the file buffer are killed when finishing the rebase. If
that is undesirable, then it might be better to use magit-rebase-edit-commit
instead of this command.

j (magit-jump-to-diffstat-or-diff)
This command jumps to the diffstat or diff. When point is on a file inside the
diffstat section, then jump to the respective diff section. Otherwise, jump to
the diffstat section or a child thereof.

The next two commands are not specific to Magit-Diff mode (or and Magit buffer for
that matter), but it might be worth pointing out that they are available here too.

SPC (scroll-up)
This command scrolls text upward.

DEL (scroll-down)
This command scrolls text downward.

Chapter 5: Inspecting 52

5.4.3 Diff Options

[User Option]magit-diff-refine-hunk
Whether to show word-granularity differences within diff hunks.

• nil Never show fine differences.

• all Show fine differences for all displayed diff hunks.

• t Refine each hunk once it becomes the current section. Keep the refinement
when another section is selected. Refreshing the buffer removes all refinement.
This variant is only provided for performance reasons.

[User Option]magit-diff-refine-ignore-whitespace
Whether to ignore whitespace changes in word-granularity differences.

[User Option]magit-diff-adjust-tab-width
Whether to adjust the width of tabs in diffs.

Determining the correct width can be expensive if it requires opening large and/or
many files, so the widths are cached in the variable magit-diff--tab-width-cache.
Set that to nil to invalidate the cache.

• nil Never adjust tab width. Use ‘tab-width’s value from the Magit buffer itself
instead.

• t If the corresponding file-visiting buffer exits, then use tab-width’s value from
that buffer. Doing this is cheap, so this value is used even if a corresponding
cache entry exists.

• always If there is no such buffer, then temporarily visit the file to determine the
value.

• NUMBER Like always, but don’t visit files larger than NUMBER bytes.

[User Option]magit-diff-paint-whitespace
Specify where to highlight whitespace errors.

See magit-diff-highlight-trailing, magit-diff-highlight-indentation. The
symbol t means in all diffs, status means only in the status buffer, and nil means
nowhere.

• nil Never highlight whitespace errors.

• t Highlight whitespace errors everywhere.

• uncommitted Only highlight whitespace errors in diffs showing uncommitted
changes. For backward compatibility status is treated as a synonym.

[User Option]magit-diff-paint-whitespace-lines
Specify in what kind of lines to highlight whitespace errors.

• t Highlight only in added lines.

• both Highlight in added and removed lines.

• all Highlight in added, removed and context lines.

[User Option]magit-diff-highlight-trailing
Whether to highlight whitespace at the end of a line in diffs. Used only when magit-

diff-paint-whitespace is non-nil.

Chapter 5: Inspecting 53

[User Option]magit-diff-highlight-indentation
This option controls whether to highlight the indentation in case it used the "wrong"
indentation style. Indentation is only highlighted if magit-diff-paint-whitespace
is also non-nil.

The value is an alist of the form ((REGEXP . INDENT)...). The path to the current
repository is matched against each element in reverse order. Therefore if a REGEXP
matches, then earlier elements are not tried.

If the used INDENT is tabs, highlight indentation with tabs. If INDENT is an
integer, highlight indentation with at least that many spaces. Otherwise, highlight
neither.

[User Option]magit-diff-hide-trailing-cr-characters
Whether to hide ^M characters at the end of a line in diffs.

[User Option]magit-diff-highlight-hunk-region-functions
This option specifies the functions used to highlight the hunk-internal region.

magit-diff-highlight-hunk-region-dim-outside overlays the outside of the hunk
internal selection with a face that causes the added and removed lines to have the
same background color as context lines. This function should not be removed from
the value of this option.

magit-diff-highlight-hunk-region-using-overlays and magit-diff-

highlight-hunk-region-using-underline emphasize the region by placing
delimiting horizontal lines before and after it. Both of these functions have glitches
which cannot be fixed due to limitations of Emacs’ display engine. For more
information see https://github.com/magit/magit/issues/2758 ff.

Instead of, or in addition to, using delimiting horizontal lines, to emphasize the bound-
aries, you may wish to emphasize the text itself, using magit-diff-highlight-hunk-
region-using-face.

In terminal frames it’s not possible to draw lines as the overlay and underline variants
normally do, so there they fall back to calling the face function instead.

[User Option]magit-diff-unmarked-lines-keep-foreground
This option controls whether added and removed lines outside the hunk-internal region
only lose their distinct background color or also the foreground color. Whether the
outside of the region is dimmed at all depends on magit-diff-highlight-hunk-

region-functions.

[User Option]magit-diff-extra-stat-arguments
This option specifies additional arguments to be used alongside --stat.

The value is a list of zero or more arguments or a function that takes no argument
and returns such a list. These arguments are allowed here: --stat-width, --stat-
name-width, --stat-graph-width and --compact-summary. Also see the git-diff(1)
manpage.

[User Option]magit-format-file-function
This function is used to format lines representing a file. It is used for file headings in
diffs, in diffstats and for lists of files (such as the untracked files). Depending on the

https://github.com/magit/magit/issues/2758

Chapter 5: Inspecting 54

caller, it receives either three or five arguments; the signature has to be (kind file

face &optional status orig). KIND is one of diff, module, stat and list.

5.4.4 Revision Buffer

[User Option]magit-revision-insert-related-refs
Whether to show related branches in revision buffers.

• nil Don’t show any related branches.

• t Show related local branches.

• all Show related local and remote branches.

• mixed Show all containing branches and local merged branches.

[User Option]magit-revision-show-gravatars
Whether to show gravatar images in revision buffers.

If nil, then don’t insert any gravatar images. If t, then insert both images. If author
or committer, then insert only the respective image.

If you have customized the option magit-revision-headers-format and want to
insert the images then you might also have to specify where to do so. In that case
the value has to be a cons-cell of two regular expressions. The car specifies where
to insert the author’s image. The top half of the image is inserted right after the
matched text, the bottom half on the next line in the same column. The cdr specifies
where to insert the committer’s image, accordingly. Either the car or the cdr may be
nil."

[User Option]magit-revision-use-hash-sections
Whether to turn hashes inside the commit message into sections.

If non-nil, then hashes inside the commit message are turned into commit sections.
There is a trade off to be made between performance and reliability:

• slow calls git for every word to be absolutely sure.

• quick skips words less than seven characters long.

• quicker additionally skips words that don’t contain a number.

• quickest uses all words that are at least seven characters long and which contain
at least one number as well as at least one letter.

If nil, then no hashes are turned into sections, but you can still visit the commit at
point using "RET".

The diffs shown in the revision buffer may be automatically restricted to a subset of
the changed files. If the revision buffer is displayed from a log buffer, the revision buffer
will share the same file restriction as that log buffer (also see the command magit-diff-

toggle-file-filter).

[User Option]magit-revision-filter-files-on-follow
Whether showing a commit from a log buffer honors the log’s file filter when the log
arguments include --follow.

When this option is nil, displaying a commit from a log ignores the log’s file filter if
the log arguments include --follow. Doing so avoids showing an empty diff in revision

Chapter 5: Inspecting 55

buffers for commits before a rename event. In such cases, the --patch argument of
the log transient can be used to show the file-restricted diffs inline.

Set this option to non-nil to keep the log’s file restriction even if --follow is present
in the log arguments.

If the revision buffer is not displayed from a log buffer, the file restriction is determined
as usual (see Section 4.4 [Transient Arguments and Buffer Variables], page 21).

5.5 Ediffing

This section describes how to enter Ediff from Magit buffers. For information on how to
use Ediff itself, see ediff.

e (magit-ediff-dwim)
Compare, stage, or resolve using Ediff.

This command tries to guess what file, and what commit or range the user
wants to compare, stage, or resolve using Ediff. It might only be able to guess
either the file, or range/commit, in which case the user is asked about the other.
It might not always guess right, in which case the appropriate magit-ediff-*
command has to be used explicitly. If it cannot read the user’s mind at all,
then it asks the user for a command to run.

E (magit-ediff)
This transient prefix command binds the following suffix commands and dis-
plays them in a temporary buffer until a suffix is invoked.

E r (magit-ediff-compare)
Compare two revisions of a file using Ediff.

If the region is active, use the revisions on the first and last line of the region.
With a prefix argument, instead of diffing the revisions, choose a revision to
view changes along, starting at the common ancestor of both revisions (i.e., use
a ". . ." range).

E m (magit-ediff-resolve-rest)
This command allows you to resolve outstanding conflicts in the file at point
using Ediff. If there is no file at point or if it doesn’t have any unmerged
changes, then this command prompts for a file.

Provided that the value of merge.conflictstyle is diff3, you can view the
file’s merge-base revision using / in the Ediff control buffer.

The A, B and Ancestor buffers are constructed from the conflict markers in
the worktree file. Because you and/or Git may have already resolved some
conflicts, that means that these buffers may not contain the actual versions
from the respective blobs.

E M (magit-ediff-resolve-all)
This command allows you to resolve all conflicts in the file at point using Ediff.
If there is no file at point or if it doesn’t have any unmerged changes, then this
command prompts for a file.

Provided that the value of merge.conflictstyle is diff3, you can view the
file’s merge-base revision using / in the Ediff control buffer.

Chapter 5: Inspecting 56

First the file in the worktree is moved aside, appending the suffix ‘.ORIG’, so
that you could later go back to that version. Then it is reconstructed from the
two sides of the conflict and the merge-base, if available.

It would be nice if the worktree file were just used as-is, but Ediff does not
support that. This means that all conflicts, that Git has already resolved, are
restored. On the other hand Ediff also tries to resolve conflicts, and in many
cases Ediff and Git should produce similar results.

However if you have already resolved some conflicts manually, then those
changes are discarded (though you can recover them from the backup file). In
such cases magit-ediff-resolve-rest might be more suitable.

The advantage that this command has over magit-ediff-resolve-rest is that
the A, B and Ancestor buffers correspond to blobs from the respective commits,
allowing you to inspect a side in context and to use Magit commands in these
buffers to do so. Blame and log commands are particularly useful here.

E t (magit-git-mergetool)
This command does not actually use Ediff. While it serves the same purpose as
‘magit-ediff-resolve-rest’, it uses ‘git mergetool --gui’ to resolve con-
flicts.

With a prefix argument this acts as a transient prefix command, allowing the
user to select the mergetool and change some settings.

E s (magit-ediff-stage)
Stage and unstage changes to a file using Ediff, defaulting to the file at point.

E u (magit-ediff-show-unstaged)
Show unstaged changes to a file using Ediff.

E i (magit-ediff-show-staged)
Show staged changes to a file using Ediff.

E w (magit-ediff-show-working-tree)
Show changes in a file between HEAD and working tree using Ediff.

E c (magit-ediff-show-commit)
Show changes to a file introduced by a commit using Ediff.

E z (magit-ediff-show-stash)
Show changes to a file introduced by a stash using Ediff.

[User Option]magit-ediff-dwim-resolve-function
This option controls which function magit-ediff-dwim uses to resolve con-
flicts. One of magit-ediff-resolve-rest, magit-ediff-resolve-all or
magit-git-mergetool; which are all discussed above.

[User Option]magit-ediff-dwim-show-on-hunks
This option controls what command magit-ediff-dwim calls when point is on uncom-
mitted hunks. When nil, always run magit-ediff-stage. Otherwise, use magit-

ediff-show-staged and magit-ediff-show-unstaged to show staged and unstaged
changes, respectively.

Chapter 5: Inspecting 57

[User Option]magit-ediff-show-stash-with-index
This option controls whether magit-ediff-show-stash includes a buffer containing
the file’s state in the index at the time the stash was created. This makes it possible
to tell which changes in the stash were staged.

[User Option]magit-ediff-quit-hook
This hook is run after quitting an Ediff session that was created using a Magit com-
mand. The hook functions are run inside the Ediff control buffer, and should not
change the current buffer.

This is similar to ediff-quit-hook but takes the needs of Magit into account. The
regular ediff-quit-hook is ignored by Ediff sessions that were created using a Magit
command.

5.6 References Buffer

y (magit-show-refs)
This command lists branches and tags in a dedicated buffer.

However if this command is invoked again from this buffer or if it is invoked
with a prefix argument, then it acts as a transient prefix command, which binds
the following suffix commands and some infix arguments.

All of the following suffix commands list exactly the same branches and tags. The only
difference the optional feature that can be enabled by changing the value of magit-refs-
show-commit-count (see below). These commands specify a different branch or commit
against which all the other references are compared.

y y (magit-show-refs-head)
This command lists branches and tags in a dedicated buffer. Each reference is
being compared with HEAD.

y c (magit-show-refs-current)
This command lists branches and tags in a dedicated buffer. Each reference is
being compared with the current branch or HEAD if it is detached.

y o (magit-show-refs-other)
This command lists branches and tags in a dedicated buffer. Each reference is
being compared with a branch read from the user.

y r (magit-refs-set-show-commit-count)
This command changes for which refs the commit count is shown.

[User Option]magit-refs-show-commit-count
Whether to show commit counts in Magit-Refs mode buffers.

• all Show counts for branches and tags.

• branch Show counts for branches only.

• nil Never show counts.

The default is nil because anything else can be very expensive.

Chapter 5: Inspecting 58

[User Option]magit-refs-pad-commit-counts
Whether to pad all commit counts on all sides in Magit-Refs mode buffers.

If this is nil, then some commit counts are displayed right next to one of the branches
that appear next to the count, without any space in between. This might look bad if
the branch name faces look too similar to magit-dimmed.

If this is non-nil, then spaces are placed on both sides of all commit counts.

[User Option]magit-refs-show-remote-prefix
Whether to show the remote prefix in lists of remote branches.

Showing the prefix is redundant because the name of the remote is already shown in
the heading preceding the list of its branches.

[User Option]magit-refs-primary-column-width
Width of the primary column in ‘magit-refs-mode’ buffers. The primary column is
the column that contains the name of the branch that the current row is about.

If this is an integer, then the column is that many columns wide. Otherwise it has to
be a cons-cell of two integers. The first specifies the minimal width, the second the
maximal width. In that case the actual width is determined using the length of the
names of the shown local branches. (Remote branches and tags are not taken into
account when calculating to optimal width.)

[User Option]magit-refs-focus-column-width
Width of the focus column in ‘magit-refs-mode’ buffers.

The focus column is the first column, which marks one branch (usually the current
branch) as the focused branch using * or @. For each other reference, this column
optionally shows how many commits it is ahead of the focused branch and <, or if it
isn’t ahead then the commits it is behind and >, or if it isn’t behind either, then a =.

This column may also display only * or @ for the focused branch, in which case this
option is ignored. Use L v to change the verbosity of this column.

[User Option]magit-refs-margin
This option specifies whether the margin is initially shown in Magit-Refs mode buffers
and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

• If INIT is non-nil, then the margin is shown initially.

• STYLE controls how to format the author or committer date. It can be one of
age (to show the age of the commit), age-abbreviated (to abbreviate the time
unit to a character), or a string (suitable for format-time-string) to show the
actual date. Option magit-log-margin-show-committer-date controls which
date is being displayed.

• WIDTH controls the width of the margin. This exists for forward compatibility
and currently the value should not be changed.

• AUTHOR controls whether the name of the author is also shown by default.

• AUTHOR-WIDTH has to be an integer. When the name of the author is shown,
then this specifies how much space is used to do so.

Chapter 5: Inspecting 59

[User Option]magit-refs-margin-for-tags
This option specifies whether to show information about tags in the margin. This is
disabled by default because it is slow if there are many tags.

The following variables control how individual refs are displayed. If you change one of
these variables (especially the "%c" part), then you should also change the others to keep
things aligned. The following %-sequences are supported:

• %a Number of commits this ref has over the one we compare to.

• %b Number of commits the ref we compare to has over this one.

• %c Number of commits this ref has over the one we compare to. For the ref which
all other refs are compared this is instead "@", if it is the current branch, or "#"

otherwise.

• %C For the ref which all other refs are compared this is "@", if it is the current branch,
or "#" otherwise. For all other refs " ".

• %h Hash of this ref’s tip.

• %m Commit summary of the tip of this ref.

• %n Name of this ref.

• %u Upstream of this local branch.

• %U Upstream of this local branch and additional local vs. upstream information.

[User Option]magit-refs-filter-alist
The purpose of this option is to forgo displaying certain refs based on their name.
If you want to not display any refs of a certain type, then you should remove the
appropriate function from magit-refs-sections-hook instead.

This alist controls which tags and branches are omitted from being displayed in
magit-refs-mode buffers. If it is nil, then all refs are displayed (subject to magit-

refs-sections-hook).

All keys are tried in order until one matches. Then its value is used and subsequent
elements are ignored. If the value is non-nil, then the reference is displayed, otherwise
it is not. If no element matches, then the reference is displayed.

A key can either be a regular expression that the refname has to match, or a function
that takes the refname as only argument and returns a boolean. A remote branch
such as "origin/master" is displayed as just "master", however for this comparison
the former is used.

RET (magit-visit-ref)
This command visits the reference or revision at point in another buffer. If
there is no revision at point or with a prefix argument then it prompts for a
revision.

This command behaves just like magit-show-commit as described above, ex-
cept if point is on a reference in a magit-refs-mode buffer, in which case the
behavior may be different, but only if you have customized the option magit-

visit-ref-behavior.

Chapter 5: Inspecting 60

[User Option]magit-visit-ref-behavior
This option controls how magit-visit-ref behaves in magit-refs-mode buffers.

By default magit-visit-ref behaves like magit-show-commit, in all buffers, includ-
ing magit-refs-mode buffers. When the type of the section at point is commit then
"RET" is bound to magit-show-commit, and when the type is either branch or tag
then it is bound to magit-visit-ref.

"RET" is one of Magit’s most essential keys and at least by default it should behave
consistently across all of Magit, especially because users quickly learn that it does
something very harmless; it shows more information about the thing at point in
another buffer.

However "RET" used to behave differently in magit-refs-mode buffers, doing sur-
prising things, some of which cannot really be described as "visit this thing". If
you’ve grown accustomed this behavior, you can restore it by adding one or more of
the below symbols to the value of this option. But keep in mind that by doing so you
don’t only introduce inconsistencies, you also lose some functionality and might have
to resort to M-x magit-show-commit to get it back.

magit-visit-ref looks for these symbols in the order in which they are described
here. If the presence of a symbol applies to the current situation, then the symbols
that follow do not affect the outcome.

• focus-on-ref

With a prefix argument update the buffer to show commit counts and lists of
cherry commits relative to the reference at point instead of relative to the current
buffer or HEAD.

Instead of adding this symbol, consider pressing "C-u y o RET".

• create-branch

If point is on a remote branch, then create a new local branch with the same
name, use the remote branch as its upstream, and then check out the local branch.

Instead of adding this symbol, consider pressing "b c RET RET", like you would
do in other buffers.

• checkout-any

Check out the reference at point. If that reference is a tag or a remote branch,
then this results in a detached HEAD.

Instead of adding this symbol, consider pressing "b b RET", like you would do
in other buffers.

• checkout-branch

Check out the local branch at point.

Instead of adding this symbol, consider pressing "b b RET", like you would do
in other buffers.

5.6.1 References Sections

The contents of references buffers is controlled using the hook magit-refs-sections-hook.
See Section 4.2.3 [Section Hooks], page 19, to learn about such hooks and how to customize
them. All of the below functions are members of the default value. Note that it makes

Chapter 5: Inspecting 61

much less sense to customize this hook than it does for the respective hook used for the
status buffer.

[User Option]magit-refs-sections-hook
Hook run to insert sections into a references buffer.

[Function]magit-insert-local-branches
Insert sections showing all local branches.

[Function]magit-insert-remote-branches
Insert sections showing all remote-tracking branches.

[Function]magit-insert-tags
Insert sections showing all tags.

5.7 Bisecting

Also see the git-bisect(1) manpage.

B (magit-bisect)
This transient prefix command binds the following suffix commands and dis-
plays them in a temporary buffer until a suffix is invoked.

When bisecting is not in progress, then the transient features the following suffix com-
mands.

B B (magit-bisect-start)
Start a bisect session.

Bisecting a bug means to find the commit that introduced it. This command
starts such a bisect session by asking for a known good commit and a known
bad commit. If you’re bisecting a change that isn’t a regression, you can select
alternate terms that are conceptually more fitting than "bad" and "good", but
the infix arguments to do so are disabled by default.

B s (magit-bisect-run)
Bisect automatically by running commands after each step.

When bisecting in progress, then the transient instead features the following suffix com-
mands.

B b (magit-bisect-bad)
Mark the current commit as bad. Use this after you have asserted that the
commit does contain the bug in question.

B g (magit-bisect-good)
Mark the current commit as good. Use this after you have asserted that the
commit does not contain the bug in question.

B m (magit-bisect-mark)
Mark the current commit with one of the bisect terms. This command provides
an alternative to magit-bisect-bad and magit-bisect-good and is useful
when using terms other than "bad" and "good". This suffix is disabled by
default.

Chapter 5: Inspecting 62

B k (magit-bisect-skip)
Skip the current commit. Use this if for some reason the current commit is not
a good one to test. This command lets Git choose a different one.

B r (magit-bisect-reset)
After bisecting, cleanup bisection state and return to original HEAD.

By default the status buffer shows information about the ongoing bisect session.

[User Option]magit-bisect-show-graph
This option controls whether a graph is displayed for the log of commits that still
have to be bisected.

5.8 Visiting Files and Blobs

Magit provides several commands that visit a file or blob (the version of a file that is stored
in a certain commit). Actually it provides several groups of such commands and the several
variants within each group.

Also see Section 8.10 [Commands for Buffers Visiting Files], page 120.

5.8.1 General-Purpose Visit Commands

These commands can be used anywhere to open any blob. Currently no keys are bound to
these commands by default, but that is likely to change.

[Command]magit-find-file
This command reads a filename and revision from the user and visits the respective
blob in a buffer. The buffer is displayed in the selected window.

[Command]magit-find-file-other-window
This command reads a filename and revision from the user and visits the respective
blob in a buffer. The buffer is displayed in another window.

[Command]magit-find-file-other-frame
This command reads a filename and revision from the user and visits the respective
blob in a buffer. The buffer is displayed in another frame.

5.8.2 Visiting Files and Blobs from a Diff

These commands can only be used when point is inside a diff. Elsewhere use magit-find-
file.

RET (magit-diff-visit-file)
This command visits the appropriate version of the file at point.

Display the buffer in the selected window. With a prefix argument, OTHER-
WINDOW, instead display the buffer in another window.

In the visited file or blob, go to the location corresponding to the location in
the diff.

If point is on an added or context line, visit the blob corresponding to our
side (i.e., the new/right side). If point is on a removed line, visit the blob
corresponding to their side (i.e., the old/left side).

Chapter 5: Inspecting 63

This applies to diffs of staged and unstaged changes as well. For staged changes
the two sides are blobs from the index and the ‘HEAD’ commit. For unstaged
changes the two sides are the actual file in the worktree and the blob from the
index.

To visit the file in the worktree, regardless of what the current diff is about,
use magit-diff-visit-worktree-file, described next.

C-<return> (magit-diff-visit-worktree-file)
This command visits the worktree version of the appropriate file. The location
of point inside the diff determines which file is being visited. Unlike magit-

diff-visit-file it always visits the "real" file in the working tree, i.e., the
"current version" of the file.

In the file-visiting buffer this command goes to the line that corresponds to the
line that point is on in the diff. Lines that were added or removed in the working
tree, the index and other commits in between are automatically accounted for.

The buffer is displayed in the selected window. With a prefix argument the
buffer is displayed in another window instead.

Variants of the above two commands exist that instead visit the file in another window
or in another frame. If you prefer such behavior, then you may want to change the above
key bindings, but note that the above commands also use another window when invoked
with a prefix argument.

[Command]magit-diff-visit-file-other-window

[Command]magit-diff-visit-file-other-frame

[Command]magit-diff-visit-worktree-file-other-window

[Command]magit-diff-visit-worktree-file-other-frame
These commands behave like the respective commands described above, except that
they display the blob or file in another window or frame.

[User Option]magit-diff-visit-prefer-worktree
This option controls whether magit-diff-visit-file always visits the respective file
in the worktree, when invoked anywhere from within a hunk of staged or unstaged
changes.

By default magit-diff-visit-file does not do that. Instead it behaves for staged
and unstaged changes as it does for committed changes, by visiting a blob from the
old/left or new/right side, depending on whether point is on a removed line or not.

For staged changes the old side is the blob from HEAD and the right side is the blog
from the index. For unstaged changes the left side is the blob from the index (if there
are any changes in the index for that file, else the blob from HEAD), and the right
side is the file in the worktree.

Being able to jump to HEAD or the index from a removed line is very useful, because
it allows you to, e.g., use blame to investigate why some line, which you have already
removed, was added in the first place.

But if you want to make further changes to already staged changes, you of course
instead need to go to the respective file in the worktree. The command magit-diff-

visit-worktree-file was created for that purpose, and it is strongly recommend

Chapter 5: Inspecting 64

that you make use of that command, even if you initially find it inconvenient having
to remember to use C-<return> instead of RET in this case.

While discouraged, you can alternatively set this option to t, which causes magit-

diff-visit-file itself to go to the file in the worktree, even when invoked from
within a hunk of staged changes. If you do that, you lose the ability to instantly go
to lines you have already removed.

[User Option]magit-diff-visit-previous-blob
This option controls whether magit-diff-visit-file visits the previous blob when
invoked with point on a removed line.

When this is t (the default) and point is on a removed line, then magit-diff-visit-

file visits the blob from the old/left commit, which still has that line, instead of
going to the new/right blob, which removes that line.

Setting this to nil, causes magit-diff-visit-file to always go to the new/right
blob, even when point is on a removed line. This is very strongly discouraged. Instead
place the cursor anywhere else within the hunk but on a removed line, if you want to
visit the new side. That way you don’t lose the ability to visit the old side.

5.9 Blaming

Also see the git-blame(1) manpage.

To start blaming, invoke the magit-file-dispatch transient prefix command. When
using the default key bindings, that can be done by pressing C-c M-g. When using the
recommended bindings, this command is instead bound to C-c f. Also see Section 9.2.3
[Global Bindings], page 129.

The blaming suffix commands can be invoked directly from the file dispatch transient.
However if you want to set an infix argument, then you have to enter the blaming sub-prefix
first.

C-c f B (magit-blame)
C-c f b (magit-blame-addition)
C-c f B b

C-c f r (magit-blame-removal)
C-c f B r

C-c f f (magit-blame-reverse)
C-c f B f

C-c f e (magit-blame-echo)
C-c f B e

C-c f q (magit-blame-quit)
C-c f B q Each of these commands is documented individually right below, alongside

their default key bindings. The bindings shown above are the recommended
bindings, which you can enable by following the instructions in Section 9.2.3
[Global Bindings], page 129.

C-c M-g B (magit-blame)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

Chapter 5: Inspecting 65

Note that not all of the following suffixes are available at all times. For example if
magit-blame-mode is not enabled, then the command whose purpose is to turn off that
mode would not be of any use and therefore isn’t available.

C-c M-g b (magit-blame-addition)
C-c M-g B b

This command augments each line or chunk of lines in the current file-visiting
or blob-visiting buffer with information about what commits last touched these
lines.

If the buffer visits a revision of that file, then history up to that revision is con-
sidered. Otherwise, the file’s full history is considered, including uncommitted
changes.

If Magit-Blame mode is already turned on in the current buffer then blaming is
done recursively, by visiting REVISION:FILE (using magit-find-file), where
REVISION is a parent of the revision that added the current line or chunk of
lines.

C-c M-g r (magit-blame-removal)
C-c M-g B r

This command augments each line or chunk of lines in the current blob-visiting
buffer with information about the revision that removes it. It cannot be used
in file-visiting buffers.

Like magit-blame-addition, this command can be used recursively.

C-c M-g f (magit-blame-reverse)
C-c M-g B f

This command augments each line or chunk of lines in the current file-visiting
or blob-visiting buffer with information about the last revision in which a line
still existed.

Like magit-blame-addition, this command can be used recursively.

C-c M-g e (magit-blame-echo)
C-c M-g B e

This command is like magit-blame-addition except that it doesn’t turn on
read-only-mode and that it initially uses the visualization style specified by
option magit-blame-echo-style.

The following key bindings are available when Magit-Blame mode is enabled and Read-
Only mode is not enabled. These commands are also available in other buffers; here only
the behavior is described that is relevant in file-visiting buffers that are being blamed.

C-c M-g q (magit-blame-quit)
C-c M-g B q

This command turns off Magit-Blame mode. If the buffer was created during
a recursive blame, then it also kills the buffer.

RET (magit-show-commit)
This command shows the commit that last touched the line at point.

SPC (magit-diff-show-or-scroll-up)
This command updates the commit buffer.

Chapter 5: Inspecting 66

This either shows the commit that last touched the line at point in the appro-
priate buffer, or if that buffer is already being displayed in the current frame
and if that buffer contains information about that commit, then the buffer is
scrolled up instead.

DEL (magit-diff-show-or-scroll-down)
This command updates the commit buffer.

This either shows the commit that last touched the line at point in the appro-
priate buffer, or if that buffer is already being displayed in the current frame
and if that buffer contains information about that commit, then the buffer is
scrolled down instead.

The following key bindings are available when both Magit-Blame mode and Read-Only
mode are enabled.

b (magit-blame)
See above.

n (magit-blame-next-chunk)
This command moves to the next chunk.

N (magit-blame-next-chunk-same-commit)
This command moves to the next chunk from the same commit.

p (magit-blame-previous-chunk)
This command moves to the previous chunk.

P (magit-blame-previous-chunk-same-commit)
This command moves to the previous chunk from the same commit.

q (magit-blame-quit)
This command turns off Magit-Blame mode. If the buffer was created during
a recursive blame, then it also kills the buffer.

M-w (magit-blame-copy-hash)
This command saves the hash of the current chunk’s commit to the kill ring.

When the region is active, the command saves the region’s content instead of
the hash, like kill-ring-save would.

c (magit-blame-cycle-style)
This command changes how blame information is visualized in the current buffer
by cycling through the styles specified using the option magit-blame-styles.

Blaming is also controlled using the following options.

[User Option]magit-blame-styles
This option defines a list of styles used to visualize blame information. For now see
its doc-string to learn more.

[User Option]magit-blame-echo-style
This option specifies the blame visualization style used by the command magit-

blame-echo. This must be a symbol that is used as the identifier for one of the styles
defined in magit-blame-styles.

Chapter 5: Inspecting 67

[User Option]magit-blame-time-format
This option specifies the format string used to display times when showing blame
information.

[User Option]magit-blame-read-only
This option controls whether blaming a buffer also makes temporarily read-only.

[User Option]magit-blame-disable-modes
This option lists incompatible minor-modes that should be disabled temporarily when
a buffer contains blame information. They are enabled again when the buffer no longer
shows blame information.

[User Option]magit-blame-goto-chunk-hook
This hook is run when moving between chunks.

68

6 Manipulating

6.1 Creating Repository

I (magit-init)
This command initializes a repository and then shows the status buffer for the
new repository.

If the directory is below an existing repository, then the user has to confirm
that a new one should be created inside. If the directory is the root of the
existing repository, then the user has to confirm that it should be reinitialized.

6.2 Cloning Repository

To clone a remote or local repository use C, which is bound to the command magit-clone.
This command either act as a transient prefix command, which binds several infix arguments
and suffix commands, or it can invoke git clone directly, depending on whether a prefix
argument is used and on the value of magit-clone-always-transient.

[User Option]magit-clone-always-transient
This option controls whether the command magit-clone always acts as a transient
prefix command, regardless of whether a prefix argument is used or not. If t, then
that command always acts as a transient prefix. If nil, then a prefix argument has
to be used for it to act as a transient.

C (magit-clone)
This command either acts as a transient prefix command as described above or
does the same thing as transient-clone-regular as described below.

If it acts as a transient prefix, then it binds the following suffix commands and
several infix arguments.

C C (magit-clone-regular)
This command creates a regular clone of an existing repository. The repository
and the target directory are read from the user.

C s (magit-clone-shallow)
This command creates a shallow clone of an existing repository. The repository
and the target directory are read from the user. By default the depth of the
cloned history is a single commit, but with a prefix argument the depth is read
from the user.

C > (magit-clone-sparse)
This command creates a clone of an existing repository and initializes a sparse
checkout, avoiding a checkout of the full working tree. To add more directories,
use the magit-sparse-checkout transient (see Section 8.6 [Sparse checkouts],
page 116).

C b (magit-clone-bare)
This command creates a bare clone of an existing repository. The repository
and the target directory are read from the user.

Chapter 6: Manipulating 69

C m (magit-clone-mirror)
This command creates a mirror of an existing repository. The repository and
the target directory are read from the user.

The following suffixes are disabled by default. See Section “Enabling and Disabling
Suffixes” in transient for how to enable them.

C d (magit-clone-shallow-since)
This command creates a shallow clone of an existing repository. Only commits
that were committed after a date are cloned, which is read from the user. The
repository and the target directory are also read from the user.

C e (magit-clone-shallow-exclude)
This command creates a shallow clone of an existing repository. This reads a
branch or tag from the user. Commits that are reachable from that are not
cloned. The repository and the target directory are also read from the user.

[User Option]magit-clone-set-remote-head
This option controls whether cloning causes the reference refs/remotes/<remote>/HEAD
to be created in the clone. The default is to delete the reference after running git

clone, which insists on creating it. This is because the reference has not been found
to be particularly useful as it is not automatically updated when the HEAD of the
remote changes. Setting this option to t preserves Git’s default behavior of creating
the reference.

[User Option]magit-clone-set-remote.pushDefault
This option controls whether the value of the Git variable remote.pushDefault is
set after cloning.

• If t, then it is always set without asking.

• If ask, then the users are asked every time they clone a repository.

• If nil, then it is never set.

[User Option]magit-clone-default-directory
This option control the default directory name used when reading the destination for
a cloning operation.

• If nil (the default), then the value of default-directory is used.

• If a directory, then that is used.

• If a function, then that is called with the remote url as the only argument and
the returned value is used.

[User Option]magit-clone-name-alist
This option maps regular expressions, which match repository names, to repository
urls, making it possible for users to enter short names instead of urls when cloning
repositories.

Each element has the form (REGEXP HOSTNAME USER). When the user enters a name
when a cloning command asks for a name or url, then that is looked up in this list.
The first element whose REGEXP matches is used.

The format specified by option magit-clone-url-format is used to turn the name
into an url, using HOSTNAME and the repository name. If the provided name

Chapter 6: Manipulating 70

contains a slash, then that is used. Otherwise if the name omits the owner of the
repository, then the default user specified in the matched entry is used.

If USER contains a dot, then it is treated as a Git variable and the value of that is
used as the username. Otherwise it is used as the username itself.

[User Option]magit-clone-url-format
The format specified by this option is used when turning repository names into urls.
%h is the hostname and %n is the repository name, including the name of the owner.
The value can be a string (representing a single static format) or an alist with elements
(HOSTNAME . FORMAT) mapping hostnames to formats. When an alist is used, the t

key represents the default format.

Example of a single format string:

(setq magit-clone-url-format

"git@%h:%n.git")

Example of by-hostname format strings:

(setq magit-clone-url-format

'(("git.example.com" . "git@%h:~%n")

(nil . "git@%h:%n.git")))

[User Option]magit-post-clone-hook
Hook run after the Git process has successfully finished cloning the repository. When
the hook is called, default-directory is let-bound to the directory where the repos-
itory has been cloned.

6.3 Staging and Unstaging

Like Git, Magit can of course stage and unstage complete files. Unlike Git, it also allows
users to gracefully un-/stage individual hunks and even just part of a hunk. To stage
individual hunks and parts of hunks using Git directly, one has to use the very modal and
rather clumsy interface of a git add --interactive session.

With Magit, on the other hand, one can un-/stage individual hunks by just moving point
into the respective section inside a diff displayed in the status buffer or a separate diff buffer
and typing s or u. To operate on just parts of a hunk, mark the changes that should be
un-/staged using the region and then press the same key that would be used to un-/stage.
To stage multiple files or hunks at once use a region that starts inside the heading of such
a section and ends inside the heading of a sibling section of the same type.

Besides staging and unstaging, Magit also provides several other "apply variants" that
can also operate on a file, multiple files at once, a hunk, multiple hunks at once, and on
parts of a hunk. These apply variants are described in the next section.

You can also use Ediff to stage and unstage. See Section 5.5 [Ediffing], page 55.

s (magit-stage)
Add the change at point to the staging area.

With a prefix argument and an untracked file (or files) at point, stage the file
but not its content. This makes it possible to stage only a subset of the new
file’s changes.

Chapter 6: Manipulating 71

S (magit-stage-modified)
Stage all changes to files modified in the worktree. Stage all new content of
tracked files and remove tracked files that no longer exist in the working tree
from the index also. With a prefix argument also stage previously untracked
(but not ignored) files.

u (magit-unstage)
Remove the change at point from the staging area.

Only staged changes can be unstaged. But by default this command performs an
action that is somewhat similar to unstaging, when it is called on a committed
change: it reverses the change in the index but not in the working tree.

U (magit-unstage-all)
Remove all changes from the staging area.

[User Option]magit-unstage-committed
This option controls whether magit-unstage "unstages" committed changes by re-
versing them in the index but not the working tree. The alternative is to raise an
error.

M-x magit-reverse-in-index

This command reverses the committed change at point in the index but not the
working tree. By default no key is bound directly to this command, but it is
indirectly called when u (magit-unstage) is pressed on a committed change.

This allows extracting a change from HEAD, while leaving it in the working tree,
so that it can later be committed using a separate commit. A typical workflow
would be:

1. Optionally make sure that there are no uncommitted changes.

2. Visit the HEAD commit and navigate to the change that should not have
been included in that commit.

3. Type u (magit-unstage) to reverse it in the index. This assumes that
magit-unstage-committed is non-nil.

4. Type c e to extend HEAD with the staged changes, including those that
were already staged before.

5. Optionally stage the remaining changes using s or S and then type c c to
create a new commit.

M-x magit-reset-index

Reset the index to some commit. The commit is read from the user and defaults
to the commit at point. If there is no commit at point, then it defaults to HEAD.

6.3.1 Staging from File-Visiting Buffers

Fine-grained un-/staging has to be done from the status or a diff buffer, but it’s also possible
to un-/stage all changes made to the file visited in the current buffer right from inside that
buffer.

M-x magit-stage-file

When invoked inside a file-visiting buffer, then stage all changes to that file.
In a Magit buffer, stage the file at point if any. Otherwise prompt for a file to

Chapter 6: Manipulating 72

be staged. With a prefix argument always prompt the user for a file, even in a
file-visiting buffer or when there is a file section at point.

M-x magit-unstage-file

When invoked inside a file-visiting buffer, then unstage all changes to that file.
In a Magit buffer, unstage the file at point if any. Otherwise prompt for a file
to be unstaged. With a prefix argument always prompt the user for a file, even
in a file-visiting buffer or when there is a file section at point.

6.4 Applying

Magit provides several "apply variants": stage, unstage, discard, reverse, and "regular
apply". At least when operating on a hunk they are all implemented using git apply,
which is why they are called "apply variants".

• Stage. Apply a change from the working tree to the index. The change also remains
in the working tree.

• Unstage. Remove a change from the index. The change remains in the working tree.

• Discard. On a staged change, remove it from the working tree and the index. On an
unstaged change, remove it from the working tree only.

• Reverse. Reverse a change in the working tree. Both committed and staged changes
can be reversed. Unstaged changes cannot be reversed. Discard them instead.

• Apply. Apply a change to the working tree. Both committed and staged changes can
be applied. Unstaged changes cannot be applied - as they already have been applied.

The previous section described the staging and unstaging commands. What follows are
the commands which implement the remaining apply variants.

a (magit-apply)
Apply the change at point to the working tree.

With a prefix argument fallback to a 3-way merge. Doing so causes the change
to be applied to the index as well.

k (magit-discard)
Remove the change at point from the working tree.

On a hunk or file with unresolved conflicts prompt which side to keep (while
discarding the other). If point is within the text of a side, then keep that side
without prompting.

v (magit-reverse)
Reverse the change at point in the working tree.

With a prefix argument fallback to a 3-way merge. Doing so causes the change
to be applied to the index as well.

With a prefix argument all apply variants attempt a 3-way merge when appropriate (i.e.,
when git apply is used internally).

Chapter 6: Manipulating 73

6.5 Committing

When the user initiates a commit, Magit calls git commit without the --message argument,
so Git has to get the message from the user. To do so, it creates a file such as .git/COMMIT_
EDITMSG and then opens that file in the editor specified by $EDITOR (or $GIT_EDITOR).

Magit arranges for that editor to be the Emacsclient. Once the user finishes the editing
session, the Emacsclient exits and Git creates the commit, using the file’s content as the
commit message.

6.5.1 Initiating a Commit

Also see the git-commit(1) manpage.

c (magit-commit)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

Creating a new commit

c c (magit-commit-create)
Create a new commit.

Editing the last commit

These commands modify the last (a.k.a., "HEAD") commit. The commit is modified (a.k.a.,
replaced) immediately. Similar commands exist for modifying other (non-HEAD) commits.
Those commands are described in the following two sections. For each command in this
section, we mention the respective non-HEAD commands, to make the relation explicit.

The command descriptions below mention the specific arguments they use when calling
git commit. The arguments specified in the menu are appended to those arguments.

c e (magit-commit-extend)
This command amends the staged changes to the last commit, without editing
its commit message.

This command calls git commit --amend --no-edit.

With a prefix argument the committer date is not updated; without an argu-
ment it is updated.

The option magit-commit-extend-override-date can be used to inverse the
meaning of the prefix argument. Non-interactively, the optional OVERRIDE-
DATE argument controls this behavior, and the option is of no relevance.

c a (magit-commit-amend)
This command amends the staged changes to the last commit, and pops up a
buffer to let the user edit its commit message.

This command calls git commit --amend --edit.

c w (magit-commit-reword)
This command pops up a buffer to let the user edit the message of the lat-
est commit. The commit tree remains unchanged and staged changes remain
staged.

Chapter 6: Manipulating 74

This command calls git commit --amend --only --edit.

With a prefix argument the committer date is not updated; without an argu-
ment it is updated.

The option magit-commit-reword-override-date can be used to inverse the
meaning of the prefix argument. Non-interactively, the optional OVERRIDE-
DATE argument controls this behavior, and the option is of no relevance.

Editing any reachable commit

These commands create a new commit, which targets an existing commit, from the staged
changes and/or using a new commit message. Any commit that is reachable from HEAD,
including HEAD itself, can be the target.

The new commit is intended to be eventually squashed into the targeted commit, but
this is not done immediately. The squashing is done at a later time, when you explicitly
call magit-rebase-autosquash, or use --autosquash with another rebase command.

Some of these commands require that you immediately write a new commit message, or
that you immediately edit an existing message.

The new commits are called "squash" and "fixup" commits. The difference is that when
a "squash" commit is squashed into its targeted commit, the user gets a chance to modify
the message to be used for the final commit; while for "fixup" commits the existing message
of the targeted commit is used as-is and the message of the "fixup" commit is discarded.

If point is on a reachable commit, then all of these commands target that commit,
without requiring confirmation. If point is on some reachable commit, but you want to
target another commit, use a prefix argument, to select a commit in a log buffer dedicated
to that task. The meaning of the prefix argument can be inverted by customizing magit-

commit-squash-confirm.

The command descriptions below mention the specific arguments they use when calling
git commit. The arguments specified in the menu are appended to those arguments.

The next two commands also exist in "instant" variants, which are described in the next
section. Those variants behave the same as the variants described here, except that they
immediately initiate an --autosquash rebase.

c f (magit-commit-fixup)
This command creates a new fixup commit from the staged changes, targeting
the reachable commit at point, if any. Otherwise the user is prompted for a
commit.

Use this variant if you want to correct some minor defect in the targeted commit,
which does not require changes to the existing message of the targeted commit.

This command calls git commit --fixup=COMMIT --no-edit.

c s (magit-commit-squash)
This command creates a new squash commit from the staged changes, targeting
the reachable commit at point, if any. Otherwise the user is prompted for a
commit.

Use this variant if you want a chance to make changes to the final commit mes-
sage, but not until the two commits are being squashed into the final combined
commit.

Chapter 6: Manipulating 75

This command calls git commit --squash=COMMIT --no-edit.

c A (magit-commit-alter)
This command creates a new fixup commit from the staged changes, targeting
the reachable commit at point, if any. Otherwise the user is prompted for a
commit.

Use this variant if you want to write the final commit message now, but (as for
all variants in this section) do not want to immediately squash the fixup and
targeted commits into a final combined commit.

This command calls git commit --fixup=amend:COMMIT --edit.

c n (magit-commit-augment)
This command creates a new squash commit from the staged changes, targeting
the reachable commit at point, if any. Otherwise the user is prompted for a
commit.

Use this variant if you want to describe the new changes now, but want to
delay writing the final message, which describes the changes in the combined
commit, until you actually combine the squash and target commits into the
final commit. You can think of the new message, which you write here, as a
"note", to be integrated once once you write the final commit message.

This command calls git commit --squash=COMMIT --edit.

c W (magit-commit-revise)
This command pops up a buffer containing the commit message of the reachable
commit at point, if any. Otherwise the user is prompted for a commit to target.

Use this variant if you want to correct the message of the targeted commit, but
want to delay performing the --autosquash rebase, which actually changes
that commit.

This command calls git commit --fixup=reword:COMMIT --edit.

Editing any reachable commit and rebasing immediately

These commands create a new commit, which targets an existing commit, from the staged
changes. Any commit that is reachable from HEAD, including HEAD itself, can be the
target.

The new commit is immediately squashed into its target commit, using an --autosquash

rebase.

The command descriptions below mention the specific arguments they use when calling
git commit. The arguments specified in the menu are appended to those arguments when
calling git commit.

c F (magit-commit-instant-fixup)
This command creates a fixup commit, targeting the reachable commit at point,
if any. Otherwise the user is prompted for a commit. Then it instantly performs
a rebase, to squash the new commit into the targeted commit.

The original commit message of the targeted commit is left untouched.

This command calls git commit --fixup=COMMIT --no-edit and then git

rebase --autosquash MERGE-BASE.

Chapter 6: Manipulating 76

c S (magit-commit-instant-squash)
This command creates a squash commit, targeting the reachable commit at
point, if any. Otherwise the user is prompted for a commit. Then it instantly
performs a rebase, to squash the new commit into the targeted commit.

During the rebase phase the user is asked to author the final commit message,
based on the original message of the targeted commit.

This command calls git commit --squash=COMMIT --no-edit and then git

rebase --autosquash MERGE-BASE.

Options used by commit commands

• Used by all or most commit commands

[User Option]magit-commit-show-diff
Whether the relevant diff is automatically shown when committing.

[User Option]magit-commit-ask-to-stage
Whether to ask to stage all unstaged changes when committing and nothing is
staged.

[User Option]magit-post-commit-hook
Hook run after creating a commit without the user editing a message.

This hook is run by magit-refresh if this-command is a member of magit-post-
commit-hook-commands. This only includes commands named magit-commit-*

that do not require that the user edits the commit message in a buffer.

Also see git-commit-post-finish-hook.

[User Option]magit-commit-diff-inhibit-same-window
Whether to inhibit use of same window when showing diff while committing.

When writing a commit, then a diff of the changes to be committed is auto-
matically shown. The idea is that the diff is shown in a different window of
the same frame and for most users that just works. In other words most users
can completely ignore this option because its value doesn’t make a difference for
them.

However for users who configured Emacs to never create a new window even when
the package explicitly tries to do so, then displaying two new buffers necessarily
means that the first is immediately replaced by the second. In our case the
message buffer is immediately replaced by the diff buffer, which is of course
highly undesirable.

A workaround is to suppress this user configuration in this particular case.
Users have to explicitly opt-in by toggling this option. We cannot enable the
workaround unconditionally because that again causes issues for other users: if
the frame is too tiny or the relevant settings too aggressive, then the diff buffer
would end up being displayed in a new frame.

Also see https://github.com/magit/magit/issues/4132.

• Used by all squash and fixup commands

https://github.com/magit/magit/issues/4132

Chapter 6: Manipulating 77

[User Option]magit-commit-squash-confirm
Whether the commit targeted by squash and fixup has to be confirmed. When
non-nil then the commit at point (if any) is used as default choice. Other-
wise it has to be confirmed. This option only affects magit-commit-squash

and magit-commit-fixup. The "instant" variants always require confirmation
because making an error while using those is harder to recover from.

• Used by specific commit commands

[User Option]magit-commit-extend-override-date
Whether using magit-commit-extend changes the committer date.

[User Option]magit-commit-reword-override-date
Whether using magit-commit-reword changes the committer date.

6.5.2 Editing Commit Messages

After initiating a commit as described in the previous section, two new buffers appear. One
shows the changes that are about to be committed, while the other is used to write the
message.

Commit messages are edited in an edit session - in the background git is waiting for
the editor, in our case emacsclient, to save the commit message in a file (in most cases
.git/COMMIT_EDITMSG) and then return. If the editor returns with a non-zero exit status
then git does not create the commit. So the most important commands are those for
finishing and aborting the commit.

C-c C-c (with-editor-finish)
Finish the current editing session by returning with exit code 0. Git then creates
the commit using the message it finds in the file.

C-c C-k (with-editor-cancel)
Cancel the current editing session by returning with exit code 1. Git then
cancels the commit, but leaves the file untouched.

In addition to being used by git commit, messages may also be stored in a ring that
persists until Emacs is closed. By default the message is stored at the beginning and the end
of an edit session (regardless of whether the session is finished successfully or was canceled).
It is sometimes useful to bring back messages from that ring.

C-c M-s (git-commit-save-message)
Save the current buffer content to the commit message ring.

M-p (git-commit-prev-message)
Cycle backward through the commit message ring, after saving the current
message to the ring. With a numeric prefix ARG, go back ARG comments.

M-n (git-commit-next-message)
Cycle forward through the commit message ring, after saving the current mes-
sage to the ring. With a numeric prefix ARG, go back ARG comments.

By default the diff for the changes that are about to be committed are automatically
shown when invoking the commit. To prevent that, remove magit-commit-diff from
server-switch-hook.

Chapter 6: Manipulating 78

When amending to an existing commit it may be useful to show either the changes that
are about to be added to that commit or to show those changes alongside those that have
already been committed.

C-c C-d (magit-diff-while-committing)
While committing, show the changes that are about to be committed. While
amending, invoking the command again toggles between showing just the new
changes or all the changes that will be committed.

Using the Revision Stack

C-c C-w (magit-pop-revision-stack)
This command inserts a representation of a revision into the current buffer.
It can be used inside buffers used to write commit messages but also in other
buffers such as buffers used to edit emails or ChangeLog files.

By default this command pops the revision which was last added to the magit-
revision-stack and inserts it into the current buffer according to magit-pop-
revision-stack-format. Revisions can be put on the stack using magit-

copy-section-value and magit-copy-buffer-revision.

If the stack is empty or with a prefix argument it instead reads a revision in the
minibuffer. By using the minibuffer history this allows selecting an item which
was popped earlier or to insert an arbitrary reference or revision without first
pushing it onto the stack.

When reading the revision from the minibuffer, then it might not be possible
to guess the correct repository. When this command is called inside a repos-
itory (e.g., while composing a commit message), then that repository is used.
Otherwise (e.g., while composing an email) then the repository recorded for
the top element of the stack is used (even though we insert another revision).
If not called inside a repository and with an empty stack, or with two prefix
arguments, then read the repository in the minibuffer too.

[User Option]magit-pop-revision-stack-format
This option controls how the command magit-pop-revision-stack inserts a revision
into the current buffer.

The entries on the stack have the format (HASH TOPLEVEL) and this option has the
format (POINT-FORMAT EOB-FORMAT INDEX-REGEXP), all of which may be nil or a
string (though either one of EOB-FORMAT or POINT-FORMAT should be a string,
and if INDEX-REGEXP is non-nil, then the two formats should be too).

First INDEX-REGEXP is used to find the previously inserted entry, by searching
backward from point. The first submatch must match the index number. That
number is incremented by one, and becomes the index number of the entry to be
inserted. If you don’t want to number the inserted revisions, then use nil for INDEX-
REGEXP.

If INDEX-REGEXP is non-nil then both POINT-FORMAT and EOB-FORMAT
should contain \"%N\", which is replaced with the number that was determined in
the previous step.

Chapter 6: Manipulating 79

Both formats, if non-nil and after removing %N, are then expanded using git show

--format=FORMAT ... inside TOPLEVEL.

The expansion of POINT-FORMAT is inserted at point, and the expansion of EOB-
FORMAT is inserted at the end of the buffer (if the buffer ends with a comment,
then it is inserted right before that).

Commit Pseudo Headers

Some projects use pseudo headers in commit messages. Magit colorizes such headers and
provides some commands to insert such headers.

[User Option]git-commit-known-pseudo-headers
A list of Git pseudo headers to be highlighted.

C-c C-i (git-commit-insert-pseudo-header)
Insert a commit message pseudo header.

C-c C-a (git-commit-ack)
Insert a header acknowledging that you have looked at the commit.

C-c C-r (git-commit-review)
Insert a header acknowledging that you have reviewed the commit.

C-c C-s (git-commit-signoff)
Insert a header to sign off the commit.

C-c C-t (git-commit-test)
Insert a header acknowledging that you have tested the commit.

C-c C-o (git-commit-cc)
Insert a header mentioning someone who might be interested.

C-c C-p (git-commit-reported)
Insert a header mentioning the person who reported the issue being fixed by
the commit.

C-c M-i (git-commit-suggested)
Insert a header mentioning the person who suggested the change.

Commit Mode and Hooks

git-commit-mode is a minor mode that is only used to establish certain key bindings. This
makes it possible to use an arbitrary major mode in buffers used to edit commit messages.
It is even possible to use different major modes in different repositories, which is useful
when different projects impose different commit message conventions.

[User Option]git-commit-major-mode
The value of this option is the major mode used to edit Git commit messages.

Because git-commit-mode is a minor mode, we don’t use its mode hook to setup the
buffer, except for the key bindings. All other setup happens in the function git-commit-

setup, which among other things runs the hook git-commit-setup-hook.

[User Option]git-commit-setup-hook
Hook run at the end of git-commit-setup.

Chapter 6: Manipulating 80

The following functions are suitable for this hook:

[Function]git-commit-save-message
Save the current buffer content to the commit message ring.

[Function]git-commit-setup-changelog-support
After this function is called, ChangeLog entries are treated as paragraphs.

[Function]git-commit-turn-on-auto-fill
Turn on auto-fill-mode.

[Function]git-commit-turn-on-flyspell
Turn on Flyspell mode. Also prevent comments from being checked and finally check
current non-comment text.

[Function]git-commit-propertize-diff
Propertize the diff shown inside the commit message buffer. Git inserts such diffs into
the commit message template when the --verbose argument is used. magit-commit
by default does not offer that argument because the diff that is shown in a separate
buffer is more useful. But some users disagree, which is why this function exists.

[Function]bug-reference-mode
Hyperlink bug references in the buffer.

[Function]with-editor-usage-message
Show usage information in the echo area.

[User Option]git-commit-post-finish-hook
Hook run after the user finished writing a commit message.

This hook is only run after pressing C-c C-c in a buffer used to edit a commit message.
If a commit is created without the user typing a message into a buffer, then this hook
is not run.

This hook is not run until the new commit has been created. If doing so takes Git
longer than one second, then this hook isn’t run at all. For certain commands such
as magit-rebase-continue this hook is never run because doing so would lead to a
race condition.

This hook is only run if magit is available.

Also see magit-post-commit-hook.

Commit Message Conventions

Git-Commit highlights certain violations of commonly accepted commit message conven-
tions. Certain violations even cause Git-Commit to ask you to confirm that you really want
to do that. This nagging can of course be turned off, but the result of doing that usually is
that instead of some code it’s now the human who is reviewing your commits who has to
waste some time telling you to fix your commits.

[User Option]git-commit-summary-max-length
The intended maximal length of the summary line of commit messages. Characters
beyond this column are colorized to indicate that this preference has been violated.

Chapter 6: Manipulating 81

[User Option]git-commit-finish-query-functions
List of functions called to query before performing commit.

The commit message buffer is current while the functions are called. If any of them
returns nil, then the commit is not performed and the buffer is not killed. The user
should then fix the issue and try again.

The functions are called with one argument. If it is non-nil then that indicates that
the user used a prefix argument to force finishing the session despite issues. Functions
should usually honor this wish and return non-nil.

By default the only member is git-commit-check-style-conventions.

[Function]git-commit-check-style-conventions
This function checks for violations of certain basic style conventions. For each viola-
tion it asks users if they want to proceed anyway.

[User Option]git-commit-style-convention-checks
This option controls what conventions the function by the same name tries to enforce.
The value is a list of self-explanatory symbols identifying certain conventions; non-
empty-second-line and overlong-summary-line.

6.6 Branching

6.6.1 The Two Remotes

The upstream branch of some local branch is the branch into which the commits on that
local branch should eventually be merged, usually something like origin/master. For the
master branch itself the upstream branch and the branch it is being pushed to, are usually
the same remote branch. But for a feature branch the upstream branch and the branch it
is being pushed to should differ.

The commits on feature branches too should eventually end up in a remote branch
such as origin/master or origin/maint. Such a branch should therefore be used as the
upstream. But feature branches shouldn’t be pushed directly to such branches. Instead
a feature branch my-feature is usually pushed to my-fork/my-feature or if you are a
contributor origin/my-feature. After the new feature has been reviewed, the maintainer
merges the feature into master. And finally master (not my-feature itself) is pushed to
origin/master.

But new features seldom are perfect on the first try, and so feature branches usually
have to be reviewed, improved, and re-pushed several times. Pushing should therefore be
easy to do, and for that reason many Git users have concluded that it is best to use the
remote branch to which the local feature branch is being pushed as its upstream.

But luckily Git has long ago gained support for a push-remote which can be configured
separately from the upstream branch, using the variables branch.<name>.pushRemote and
remote.pushDefault. So we no longer have to choose which of the two remotes should be
used as "the remote".

Each of the fetching, pulling, and pushing transient commands features three suffix
commands that act on the current branch and some other branch. Of these, p is bound to
a command which acts on the push-remote, u is bound to a command which acts on the

Chapter 6: Manipulating 82

upstream, and e is bound to a command which acts on any other branch. The status buffer
shows unpushed and unpulled commits for both the push-remote and the upstream.

It’s fairly simple to configure these two remotes. The values of all the variables that are
related to fetching, pulling, and pushing (as well as some other branch-related variables) can
be inspected and changed using the command magit-branch-configure, which is available
from many transient prefix commands that deal with branches. It is also possible to set the
push-remote or upstream while pushing (see Section 7.4 [Pushing], page 107).

6.6.2 Branch Commands

The transient prefix command magit-branch is used to create and checkout branches, and
to make changes to existing branches. It is not used to fetch, pull, merge, rebase, or
push branches, i.e., this command deals with branches themselves, not with the commits
reachable from them. Those features are available from separate transient commands.

b (magit-branch)
This transient prefix command binds the following suffix commands and dis-
plays them in a temporary buffer until a suffix is invoked.

By default it also binds and displays the values of some branch-related Git
variables and allows changing their values.

[User Option]magit-branch-direct-configure
This option controls whether the transient command magit-branch can be used to
directly change the values of Git variables. This defaults to t (to avoid changing
key bindings). When set to nil, then no variables are displayed by that transient
command, and its suffix command magit-branch-configure has to be used instead
to view and change branch related variables.

b C (magit-branch-configure)
f C

F C

P C This transient prefix command binds commands that set the value of branch-
related variables and displays them in a temporary buffer until the transient is
exited.

With a prefix argument, this command always prompts for a branch.

Without a prefix argument this depends on whether it was invoked as a suffix of
magit-branch and on the magit-branch-direct-configure option. If magit-
branch already displays the variables for the current branch, then it isn’t useful
to invoke another transient that displays them for the same branch. In that
case this command prompts for a branch.

The variables are described in Section 6.6.3 [Branch Git Variables], page 86.

b b (magit-checkout)
Checkout a revision read in the minibuffer and defaulting to the branch or ar-
bitrary revision at point. If the revision is a local branch then that becomes the
current branch. If it is something else then HEAD becomes detached. Checkout
fails if the working tree or the staging area contain changes.

Chapter 6: Manipulating 83

b n (magit-branch-create)
Create a new branch. The user is asked for a branch or arbitrary revision to
use as the starting point of the new branch. When a branch name is provided,
then that becomes the upstream branch of the new branch. The name of the
new branch is also read in the minibuffer.

Also see option magit-branch-prefer-remote-upstream.

b c (magit-branch-and-checkout)
This command creates a new branch like magit-branch-create, but then also
checks it out.

Also see option magit-branch-prefer-remote-upstream.

b l (magit-branch-checkout)
This command checks out an existing or new local branch. It reads a branch
name from the user offering all local branches and a subset of remote branches as
candidates. Remote branches for which a local branch by the same name exists
are omitted from the list of candidates. The user can also enter a completely
new branch name.

• If the user selects an existing local branch, then that is checked out.

• If the user selects a remote branch, then it creates and checks out a new
local branch with the same name, and configures the selected remote branch
as the push target.

• If the user enters a new branch name, then it creates and checks that out,
after also reading the starting-point from the user.

In the latter two cases the upstream is also set. Whether it is set to the
chosen starting point or something else depends on the value of magit-branch-
adjust-remote-upstream-alist.

b s (magit-branch-spinoff)
This command creates and checks out a new branch starting at and tracking the
current branch. That branch in turn is reset to the last commit it shares with
its upstream. If the current branch has no upstream or no unpushed commits,
then the new branch is created anyway and the previously current branch is
not touched.

This is useful to create a feature branch after work has already begun on the
old branch (likely but not necessarily "master").

If the current branch is a member of the value of option magit-branch-prefer-

remote-upstream (which see), then the current branch will be used as the
starting point as usual, but the upstream of the starting-point may be used as
the upstream of the new branch, instead of the starting-point itself.

If optional FROM is non-nil, then the source branch is reset to FROM~, instead
of to the last commit it shares with its upstream. Interactively, FROM is only
ever non-nil, if the region selects some commits, and among those commits,
FROM is the commit that is the fewest commits ahead of the source branch.

The commit at the other end of the selection actually does not matter, all
commits between FROM and HEAD are moved to the new branch. If FROM

Chapter 6: Manipulating 84

is not reachable from HEAD or is reachable from the source branch’s upstream,
then an error is raised.

b S (magit-branch-spinout)
This command behaves like magit-branch-spinoff, except that it does not
change the current branch. If there are any uncommitted changes, then it
behaves exactly like magit-branch-spinoff.

b x (magit-branch-reset)
This command resets a branch, defaulting to the branch at point, to the tip of
another branch or any other commit.

When the branch being reset is the current branch, then a hard reset is per-
formed. If there are any uncommitted changes, then the user has to confirm
the reset because those changes would be lost.

This is useful when you have started work on a feature branch but realize it’s
all crap and want to start over.

When resetting to another branch and a prefix argument is used, then the target
branch is set as the upstream of the branch that is being reset.

b k (magit-branch-delete)
Delete one or multiple branches. If the region marks multiple branches, then
offer to delete those. Otherwise, prompt for a single branch to be deleted,
defaulting to the branch at point.

Require confirmation when deleting branches is dangerous in some way. Option
magit-no-confirm can be customized to not require confirmation in certain
cases. See its docstring to learn why confirmation is required by default in
certain cases or if a prompt is confusing.

b m (magit-branch-rename)
Rename a branch. The branch and the new name are read in the minibuffer.
With prefix argument the branch is renamed even if that name conflicts with
an existing branch.

[User Option]magit-branch-read-upstream-first
When creating a branch, whether to read the upstream branch before the name of
the branch that is to be created. The default is t, and I recommend you leave it at
that.

[User Option]magit-branch-prefer-remote-upstream
This option specifies whether remote upstreams are favored over local upstreams when
creating new branches.

When a new branch is created, then the branch, commit, or stash at point is suggested
as the starting point of the new branch, or if there is no such revision at point the
current branch. In either case the user may choose another starting point.

If the chosen starting point is a branch, then it may also be set as the upstream of
the new branch, depending on the value of the Git variable ‘branch.autoSetupMerge’.
By default this is done for remote branches, but not for local branches.

You might prefer to always use some remote branch as upstream. If the chosen
starting point is (1) a local branch, (2) whose name matches a member of the value of

Chapter 6: Manipulating 85

this option, (3) the upstream of that local branch is a remote branch with the same
name, and (4) that remote branch can be fast-forwarded to the local branch, then the
chosen branch is used as starting point, but its own upstream is used as the upstream
of the new branch.

Members of this option’s value are treated as branch names that have to match
exactly unless they contain a character that makes them invalid as a branch name.
Recommended characters to use to trigger interpretation as a regexp are "*" and
"^". Some other characters which you might expect to be invalid, actually are not,
e.g., ".+$" are all perfectly valid. More precisely, if git check-ref-format --branch

STRING exits with a non-zero status, then treat STRING as a regexp.

Assuming the chosen branch matches these conditions you would end up with with
e.g.:

feature --upstream--> origin/master

instead of

feature --upstream--> master --upstream--> origin/master

Which you prefer is a matter of personal preference. If you do prefer the former,
then you should add branches such as master, next, and maint to the value of this
options.

[User Option]magit-branch-adjust-remote-upstream-alist
The value of this option is an alist of branches to be used as the upstream when
branching a remote branch.

When creating a local branch from an ephemeral branch located on a remote, e.g.,
a feature or hotfix branch, then that remote branch should usually not be used as
the upstream branch, since the push-remote already allows accessing it and having
both the upstream and the push-remote reference the same related branch would be
wasteful. Instead a branch like "maint" or "master" should be used as the upstream.

This option allows specifying the branch that should be used as the upstream when
branching certain remote branches. The value is an alist of the form ((UPSTREAM .

RULE)...). The first matching element is used, the following elements are ignored.

UPSTREAM is the branch to be used as the upstream for branches specified by
RULE. It can be a local or a remote branch.

RULE can either be a regular expression, matching branches whose upstream should
be the one specified by UPSTREAM. Or it can be a list of the only branches that
should not use UPSTREAM; all other branches will. Matching is done after stripping
the remote part of the name of the branch that is being branched from.

If you use a finite set of non-ephemeral branches across all your repositories, then you
might use something like:

(("origin/master" . ("master" "next" "maint")))

Or if the names of all your ephemeral branches contain a slash, at least in some
repositories, then a good value could be:

(("origin/master" . "/"))

Of course you can also fine-tune:

(("origin/maint" . "\\`hotfix/")

Chapter 6: Manipulating 86

("origin/master" . "\\`feature/"))

UPSTREAM can be a local branch:

(("master" . ("master" "next" "maint")))

Because the main branch is no longer almost always named "master" you should also
account for other common names:

(("main" . ("main" "master" "next" "maint"))

("master" . ("main" "master" "next" "maint")))

[Command]magit-branch-orphan
This command creates and checks out a new orphan branch with contents from a
given revision.

[Command]magit-branch-or-checkout
This command is a hybrid between magit-checkout and magit-branch-and-

checkout and is intended as a replacement for the former in magit-branch.

It first asks the user for an existing branch or revision. If the user input actually can
be resolved as a branch or revision, then it checks that out, just like magit-checkout
would.

Otherwise it creates and checks out a new branch using the input as its name. Before
doing so it reads the starting-point for the new branch. This is similar to what
magit-branch-and-checkout does.

To use this command instead of magit-checkout add this to your init file:

(transient-replace-suffix 'magit-branch 'magit-checkout

'("b" "dwim" magit-branch-or-checkout))

6.6.3 Branch Git Variables

These variables can be set from the transient prefix command magit-branch-configure.
By default they can also be set from magit-branch. See Section 6.6.2 [Branch Commands],
page 82.

[Variable]branch.NAME.merge
Together with branch.NAME.remote this variable defines the upstream branch of the
local branch named NAME. The value of this variable is the full reference of the
upstream branch.

[Variable]branch.NAME.remote
Together with branch.NAME.merge this variable defines the upstream branch of the
local branch named NAME. The value of this variable is the name of the upstream
remote.

[Variable]branch.NAME.rebase
This variable controls whether pulling into the branch named NAME is done by
rebasing or by merging the fetched branch.

• When true then pulling is done by rebasing.

• When false then pulling is done by merging.

• When undefined then the value of pull.rebase is used. The default of that
variable is false.

Chapter 6: Manipulating 87

[Variable]branch.NAME.pushRemote
This variable specifies the remote that the branch named NAME is usually pushed
to. The value has to be the name of an existing remote.

It is not possible to specify the name of branch to push the local branch to. The
name of the remote branch is always the same as the name of the local branch.

If this variable is undefined but remote.pushDefault is defined, then the value of
the latter is used. By default remote.pushDefault is undefined.

[Variable]branch.NAME.description
This variable can be used to describe the branch named NAME. That description is
used, e.g., when turning the branch into a series of patches.

The following variables specify defaults which are used if the above branch-specific vari-
ables are not set.

[Variable]pull.rebase
This variable specifies whether pulling is done by rebasing or by merging. It can be
overwritten using branch.NAME.rebase.

• When true then pulling is done by rebasing.

• When false (the default) then pulling is done by merging.

Since it is never a good idea to merge the upstream branch into a feature or hotfix
branch and most branches are such branches, you should consider setting this to true,
and branch.master.rebase to false.

[Variable]remote.pushDefault
This variable specifies what remote the local branches are usually pushed to. This
can be overwritten per branch using branch.NAME.pushRemote.

The following variables are used during the creation of a branch and control whether the
various branch-specific variables are automatically set at this time.

[Variable]branch.autoSetupMerge
This variable specifies under what circumstances creating a branch NAME should
result in the variables branch.NAME.merge and branch.NAME.remote being set ac-
cording to the starting point used to create the branch. If the starting point isn’t a
branch, then these variables are never set.

• When always then the variables are set regardless of whether the starting point
is a local or a remote branch.

• When true (the default) then the variables are set when the starting point is a
remote branch, but not when it is a local branch.

• When false then the variables are never set.

[Variable]branch.autoSetupRebase
This variable specifies whether creating a branch NAME should result in the variable
branch.NAME.rebase being set to true.

• When always then the variable is set regardless of whether the starting point is
a local or a remote branch.

Chapter 6: Manipulating 88

• When local then the variable are set when the starting point is a local branch,
but not when it is a remote branch.

• When remote then the variable are set when the starting point is a remote
branch, but not when it is a local branch.

• When never (the default) then the variable is never set.

Note that the respective commands always change the repository-local values. If you
want to change the global value, which is used when the local value is undefined, then you
have to do so on the command line, e.g.:

git config --global remote.autoSetupMerge always

For more information about these variables you should also see the git-config(1) man-
page. Also see the git-branch(1) manpage. , the git-checkout(1) manpage. and Section 7.4
[Pushing], page 107.

[User Option]magit-prefer-remote-upstream
This option controls whether commands that read a branch from the user and then
set it as the upstream branch, offer a local or a remote branch as default completion
candidate, when they have the choice.

This affects all commands that use magit-read-upstream-branch or magit-read-
starting-point, which includes all commands that change the upstream and many
which create new branches.

6.6.4 Auxiliary Branch Commands

These commands are not available from the transient magit-branch by default.

[Command]magit-branch-shelve
This command shelves a branch. This is done by deleting the branch, and creating a
new reference "refs/shelved/BRANCH-NAME" pointing at the same commit as the
branch pointed at. If the deleted branch had a reflog, then that is preserved as the
reflog of the new reference.

This is useful if you want to move a branch out of sight, but are not ready to completely
discard it yet.

[Command]magit-branch-unshelve
This command unshelves a branch that was previously shelved using magit-branch-

shelve. This is done by deleting the reference "refs/shelved/BRANCH-NAME" and
creating a branch "BRANCH-NAME" pointing at the same commit as the deleted
reference pointed at. If the deleted reference had a reflog, then that is restored as the
reflog of the branch.

6.7 Merging

Also see the git-merge(1) manpage. For information on how to resolve merge conflicts see
the next section.

m (magit-merge)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

Chapter 6: Manipulating 89

When no merge is in progress, then the transient features the following suffix commands.

m m (magit-merge-plain)
This command merges another branch or an arbitrary revision into the current
branch. The branch or revision to be merged is read in the minibuffer and
defaults to the branch at point.

Unless there are conflicts or a prefix argument is used, then the resulting merge
commit uses a generic commit message, and the user does not get a chance to
inspect or change it before the commit is created. With a prefix argument this
does not actually create the merge commit, which makes it possible to inspect
how conflicts were resolved and to adjust the commit message.

m e (magit-merge-editmsg)
This command merges another branch or an arbitrary revision into the current
branch and opens a commit message buffer, so that the user can make adjust-
ments. The commit is not actually created until the user finishes with C-c

C-c.

m n (magit-merge-nocommit)
This command merges another branch or an arbitrary revision into the current
branch, but does not actually create the merge commit. The user can then
further adjust the merge, even when automatic conflict resolution succeeded
and/or adjust the commit message.

m a (magit-merge-absorb)
This command merges another local branch into the current branch and then
removes the former.

Before the source branch is merged, it is first force pushed to its push-remote,
provided the respective remote branch already exists. This ensures that the
respective pull-request (if any) won’t get stuck on some obsolete version of the
commits that are being merged. Finally, if magit-branch-pull-request was
used to create the merged branch, then the respective remote branch is also
removed.

m d (magit-merge-dissolve)
This command merges the current branch into another local branch and then
removes the former. The latter becomes the new current branch.

Before the source branch is merged, it is first force pushed to its push-remote,
provided the respective remote branch already exists. This ensures that the
respective pull-request (if any) won’t get stuck on some obsolete version of the
commits that are being merged. Finally, if magit-branch-pull-request was
used to create the merged branch, then the respective remote branch is also
removed.

m s (magit-merge-squash)
This command squashes the changes introduced by another branch or an arbi-
trary revision into the current branch. This only applies the changes made by
the squashed commits. No information is preserved that would allow creating
an actual merge commit. Instead of this command you should probably use a
command from the apply transient.

Chapter 6: Manipulating 90

m p (magit-merge-preview)
This command shows a preview of merging another branch or an arbitrary
revision into the current branch.

Note that commands, that normally change how a diff is displayed, do not work
in buffers created by this command, because the underlying Git command does
not support diff arguments.

When a merge is in progress, then the transient instead features the following suffix
commands.

m m (magit-merge)
After the user resolved conflicts, this command proceeds with the merge. If
some conflicts weren’t resolved, then this command fails.

m a (magit-merge-abort)
This command aborts the current merge operation.

6.8 Resolving Conflicts

When merging branches (or otherwise combining or changing history) conflicts can occur.
If you edited two completely different parts of the same file in two branches and then merge
one of these branches into the other, then Git can resolve that on its own, but if you edit
the same area of a file, then a human is required to decide how the two versions, or "sides
of the conflict", are to be combined into one.

Here we can only provide a brief introduction to the subject and point you toward some
tools that can help. If you are new to this, then please also consult Git’s own documentation
as well as other resources.

If a file has conflicts and Git cannot resolve them by itself, then it puts both versions
into the affected file along with special markers whose purpose is to denote the boundaries
of the unresolved part of the file and between the different versions. These boundary lines
begin with the strings consisting of seven times the same character, one of <, |, = and >,
and are followed by information about the source of the respective versions, e.g.:

<<<<<<< HEAD

Take the blue pill.

=======

Take the red pill.

>>>>>>> feature

In this case you have chosen to take the red pill on one branch and on another you picked
the blue pill. Now that you are merging these two diverging branches, Git cannot possibly
know which pill you want to take.

To resolve that conflict you have to create a version of the affected area of the file by
keeping only one of the sides, possibly by editing it in order to bring in the changes from
the other side, remove the other versions as well as the markers, and then stage the result.
A possible resolution might be:

Take both pills.

Often it is useful to see not only the two sides of the conflict but also the "original"
version from before the same area of the file was modified twice on different branches.
Instruct Git to insert that version as well by running this command once:

Chapter 6: Manipulating 91

git config --global merge.conflictStyle diff3

The above conflict might then have looked like this:

<<<<<<< HEAD

Take the blue pill.

||||||| merged common ancestors

Take either the blue or the red pill, but not both.

=======

Take the red pill.

>>>>>>> feature

If that were the case, then the above conflict resolution would not have been correct,
which demonstrates why seeing the original version alongside the conflicting versions can
be useful.

You can perform the conflict resolution completely by hand, but Emacs also provides
some packages that help in the process: Smerge, Ediff (ediff), and Emerge (Section
“Emerge” in emacs). Magit does not provide its own tools for conflict resolution, but
it does make using Smerge and Ediff more convenient. (Ediff supersedes Emerge, so you
probably don’t want to use the latter anyway.)

In the Magit status buffer, files with unresolved conflicts are listed in the "Unstaged
changes" and/or "Staged changes" sections. They are prefixed with the word "unmerged",
which in this context essentially is a synonym for "unresolved".

Pressing RET while point is on such a file section shows a buffer visiting that file, turns
on smerge-mode in that buffer, and places point inside the first area with conflicts. You
should then resolve that conflict using regular edit commands and/or Smerge commands.

Unfortunately Smerge does not have a manual, but you can get a list of commands and
binding C-c ^ C-h and press RET while point is on a command name to read its documen-
tation.

Normally you would edit one version and then tell Smerge to keep only that version. Use
C-c ^ m (smerge-keep-mine) to keep the HEAD version or C-c ^ o (smerge-keep-other) to
keep the version that follows "|||||||". Then use C-c ^ n to move to the next conflicting
area in the same file. Once you are done resolving conflicts, return to the Magit status
buffer. The file should now be shown as "modified", no longer as "unmerged", because
Smerge automatically stages the file when you save the buffer after resolving the last conflict.

Magit now wraps the mentioned Smerge commands, allowing you to use these key bind-
ings without having to go to the file-visiting buffer. Additionally k (magit-discard) on a
hunk with unresolved conflicts asks which side to keep or, if point is on a side, then it keeps
it without prompting. Similarly k on a unresolved file ask which side to keep.

Alternatively you could use Ediff, which uses separate buffers for the different versions
of the file. To resolve conflicts in a file using Ediff press e while point is on such a file in
the status buffer.

Ediff can be used for other purposes as well. For more information on how to enter Ediff
from Magit, see Section 5.5 [Ediffing], page 55. Explaining how to use Ediff is beyond the
scope of this manual, instead see ediff.

If you are unsure whether you should Smerge or Ediff, then use the former. It is much
easier to understand and use, and except for truly complex conflicts, the latter is usually
overkill.

Chapter 6: Manipulating 92

6.9 Rebasing

Also see the git-rebase(1) manpage. For information on how to resolve conflicts that occur
during rebases see the preceding section.

r (magit-rebase)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

When no rebase is in progress, then the transient features the following suffix commands.

Using one of these commands starts a rebase sequence. Git might then stop somewhere
along the way, either because you told it to do so, or because applying a commit failed
due to a conflict. When that happens, then the status buffer shows information about the
rebase sequence which is in progress in a section similar to a log section. See Section 6.9.2
[Information About In-Progress Rebase], page 96.

For information about the upstream and the push-remote, see Section 6.6.1 [The Two
Remotes], page 81.

r p (magit-rebase-onto-pushremote)
This command rebases the current branch onto its push-remote.

With a prefix argument or when the push-remote is either not configured or
unusable, then let the user first configure the push-remote.

r u (magit-rebase-onto-upstream)
This command rebases the current branch onto its upstream branch.

With a prefix argument or when the upstream is either not configured or un-
usable, then let the user first configure the upstream.

r e (magit-rebase-branch)
This command rebases the current branch onto a branch read in the minibuffer.
All commits that are reachable from head but not from the selected branch
TARGET are being rebased.

r s (magit-rebase-subset)
This command starts a non-interactive rebase sequence to transfer commits
from START to HEAD onto NEWBASE. START has to be selected from a list
of recent commits.

By default Magit uses the --autostash argument, which causes uncommitted changes
to be stored in a stash before the rebase begins. These changes are restored after the rebase
completes and if possible the stash is removed. If the stash does not apply cleanly, then
the stash is not removed. In case something goes wrong when resolving the conflicts, this
allows you to start over.

Even though one of the actions is dedicated to interactive rebases, the transient also
features the infix argument --interactive. This can be used to turn one of the other,
non-interactive rebase variants into an interactive rebase.

For example if you want to clean up a feature branch and at the same time rebase it
onto master, then you could use r-iu. But we recommend that you instead do that in two
steps. First use ri to cleanup the feature branch, and then in a second step ru to rebase it

Chapter 6: Manipulating 93

onto master. That way if things turn out to be more complicated than you thought and/or
you make a mistake and have to start over, then you only have to redo half the work.

Explicitly enabling --interactive won’t have an effect on the following commands as
they always use that argument anyway, even if it is not enabled in the transient.

r i (magit-rebase-interactive)
This command starts an interactive rebase sequence.

r f (magit-rebase-autosquash)
This command combines squash and fixup commits with their intended targets.

By default only commits that are not reachable from the upstream branch
are potentially squashed into. If no upstream is configured or with a prefix
argument, the user is prompted for the first commit to potentially squash into.

r m (magit-rebase-edit-commit)
This command starts an interactive rebase sequence that lets the user edit a
single older commit.

r w (magit-rebase-reword-commit)
This command starts an interactive rebase sequence that lets the user reword
a single older commit.

r k (magit-rebase-remove-commit)
This command removes a single older commit using rebase.

When a rebase is in progress, then the transient instead features the following suffix
commands.

r r (magit-rebase-continue)
This command restart the current rebasing operation.

In some cases this pops up a commit message buffer for you do edit. With a
prefix argument the old message is reused as-is.

r s (magit-rebase-skip)
This command skips the current commit and restarts the current rebase oper-
ation.

r e (magit-rebase-edit)
This command lets the user edit the todo list of the current rebase operation.

r a (magit-rebase-abort)
This command aborts the current rebase operation, restoring the original
branch.

6.9.1 Editing Rebase Sequences

C-c C-c (with-editor-finish)
Finish the current editing session by returning with exit code 0. Git then uses
the rebase instructions it finds in the file.

C-c C-k (with-editor-cancel)
Cancel the current editing session by returning with exit code 1. Git then
forgoes starting the rebase sequence.

Chapter 6: Manipulating 94

RET (git-rebase-show-commit)
Show the commit on the current line in another buffer and select that buffer.

SPC (git-rebase-show-or-scroll-up)
Show the commit on the current line in another buffer without selecting that
buffer. If the revision buffer is already visible in another window of the current
frame, then instead scroll that window up.

DEL (git-rebase-show-or-scroll-down)
Show the commit on the current line in another buffer without selecting that
buffer. If the revision buffer is already visible in another window of the current
frame, then instead scroll that window down.

p (git-rebase-backward-line)
Move to previous line.

n (forward-line)
Move to next line.

M-p (git-rebase-move-line-up)
Move the current commit (or command) up.

M-n (git-rebase-move-line-down)
Move the current commit (or command) down.

r (git-rebase-reword)
Edit message of commit on current line.

e (git-rebase-edit)
Stop at the commit on the current line.

s (git-rebase-squash)
This command folds the commit on the current line into the previous commit,
giving the user a change to manually merge the two messages.

S (git-rebase-squish)
This command folds the commit on the current line into the previous commit,
discarding the message of the previous commit but giving the user a change to
edit the final message, based on the message of the current commit.

This action’s indicator, shown in the list of commits, is fixup -c (with a lower-
case c).

f (git-rebase-fixup)
This command folds the commit on the current line into the previous commit,
using only the message of the previous commit as-is and discarding the message
of the current commit.

F (git-rebase-alter)
This command folds the commit on the current into the previous commit, dis-
carding the message of the previous commit and instead using the message of
the current commit as-is.

This is like git-rebase-alter, except that it uses the other message. This is
also like git-rebase-squish, except that it lets the user edit the message.

Chapter 6: Manipulating 95

This action’s indicator, shown in the list of commits, is fixup -C (with a upper-
case C).

k (git-rebase-kill-line)
Comment the current action line, or if it is already commented, then uncomment
it.

c (git-rebase-pick)
Use commit on current line.

x (git-rebase-exec)
Insert a shell command to be run after the proceeding commit.

If there already is such a command on the current line, then edit that instead.
With a prefix argument insert a new command even when there already is one
on the current line. With empty input remove the command on the current
line, if any.

b (git-rebase-break)
Insert a break action before the current line, instructing Git to return control
to the user.

y (git-rebase-insert)
Read an arbitrary commit and insert it below current line.

C-x u (git-rebase-undo)
Undo some previous changes. Like undo but works in read-only buffers.

[User Option]git-rebase-auto-advance
Whether to move to next line after changing a line.

[User Option]git-rebase-show-instructions
Whether to show usage instructions inside the rebase buffer.

[User Option]git-rebase-confirm-cancel
Whether confirmation is required to cancel.

When a rebase is performed with the --rebase-merges option, the sequence will include
a few other types of actions and the following commands become relevant.

l (git-rebase-label)
This commands inserts a label action or edits the one at point.

t (git-rebase-reset)
This command inserts a reset action or edits the one at point. The prompt will
offer the labels that are currently present in the buffer.

MM (git-rebase-merge)
The command inserts a merge action or edits the one at point. The prompt will
offer the labels that are currently present in the buffer. Specifying a message
to reuse via -c or -C is not supported; an editor will always be invoked for the
merge.

Chapter 6: Manipulating 96

Mt (git-rebase-merge-toggle-editmsg)
This command toggles between the -C and -c options of the merge action at
point. These options both specify a commit whose message should be reused.
The lower-case variant instructs Git to invoke the editor when creating the
merge, allowing the user to edit the message.

6.9.2 Information About In-Progress Rebase

While a rebase sequence is in progress, the status buffer features a section that lists the
commits that have already been applied as well as the commits that still have to be applied.

The commits are split in two halves. When rebase stops at a commit, either because
the user has to deal with a conflict or because s/he explicitly requested that rebase stops
at that commit, then point is placed on the commit that separates the two groups, i.e., on
HEAD. The commits above it have not been applied yet, while the HEAD and the commits
below it have already been applied. In between these two groups of applied and yet-to-be
applied commits, there sometimes is a commit which has been dropped.

Each commit is prefixed with a word and these words are additionally shown in different
colors to indicate the status of the commits.

The following colors are used:

• Commits that use the same foreground color as the default face have not been applied
yet.

• Yellow commits have some special relationship to the commit rebase stopped at. This
is used for the words "join", "goal", "same" and "work" (see below).

• Gray commits have already been applied.

• The blue commit is the HEAD commit.

• The green commit is the commit the rebase sequence stopped at. If this is the same
commit as HEAD (e.g., because you haven’t done anything yet after rebase stopped at
the commit, then this commit is shown in blue, not green). There can only be a green
and a blue commit at the same time, if you create one or more new commits after
rebase stops at a commit.

• Red commits have been dropped. They are shown for reference only, e.g., to make it
easier to diff.

Of course these colors are subject to the color-theme in use.

The following words are used:

• Commits prefixed with pick, reword, edit, squash, and fixup have not been applied
yet. These words have the same meaning here as they do in the buffer used to edit
the rebase sequence. See Section 6.9.1 [Editing Rebase Sequences], page 93. When
the --rebase-merges option was specified, reset, label, and merge lines may also be
present.

• Commits prefixed with done and onto have already been applied. It is possible for
such a commit to be the HEAD, in which case it is blue. Otherwise it is grey.

• The commit prefixed with onto is the commit on top of which all the other commits
are being re-applied. This commit itself did not have to be re-applied, it is the
commit rebase did rewind to before starting to re-apply other commits.

Chapter 6: Manipulating 97

• Commits prefixed with done have already been re-applied. This includes commits
that have been re-applied but also new commits that you have created during the
rebase.

• All other commits, those not prefixed with any of the above words, are in some way
related to the commit at which rebase stopped.

To determine whether a commit is related to the stopped-at commit their hashes, trees
and patch-ids1 are being compared. The commit message is not used for this purpose.

Generally speaking commits that are related to the stopped-at commit can have any
of the used colors, though not all color/word combinations are possible.

Words used for stopped-at commits are:

• When a commit is prefixed with void, then that indicates that Magit knows for
sure that all the changes in that commit have been applied using several new
commits. This commit is no longer reachable from HEAD, and it also isn’t one of
the commits that will be applied when resuming the session.

• When a commit is prefixed with join, then that indicates that the rebase sequence
stopped at that commit due to a conflict - you now have to join (merge) the changes
with what has already been applied. In a sense this is the commit rebase stopped
at, but while its effect is already in the index and in the worktree (with conflict
markers), the commit itself has not actually been applied yet (it isn’t the HEAD).
So it is shown in yellow, like the other commits that still have to be applied.

• When a commit is prefixed with stop or a blue or green same, then that indicates
that rebase stopped at this commit, that it is still applied or has been applied
again, and that at least its patch-id is unchanged.

• When a commit is prefixed with stop, then that indicates that rebase stopped
at that commit because you requested that earlier, and its patch-id is un-
changed. It might even still be the exact same commit.

• When a commit is prefixed with a blue or green same, then that indicates
that while its tree or hash changed, its patch-id did not. If it is blue, then it
is the HEAD commit (as always for blue). When it is green, then it no longer
is HEAD because other commit have been created since (but before continuing
the rebase).

• When a commit is prefixed with goal, a yellow same, or work, then that indicates
that rebase applied that commit but that you then reset HEAD to an earlier commit
(likely to split it up into multiple commits), and that there are some uncommitted
changes remaining which likely (but not necessarily) originate from that commit.

• When a commit is prefixed with goal, then that indicates that it is still
possible to create a new commit with the exact same tree (the "goal") without
manually editing any files, by committing the index, or by staging all changes

1 The patch-id is a hash of the changes introduced by a commit. It differs from the hash of the commit
itself, which is a hash of the result of applying that change (i.e., the resulting trees and blobs) as well as
author and committer information, the commit message, and the hashes of the parents of the commit.
The patch-id hash on the other hand is created only from the added and removed lines, even line numbers
and whitespace changes are ignored when calculating this hash. The patch-ids of two commits can be
used to answer the question "Do these commits make the same change?".

Chapter 6: Manipulating 98

and then committing that. This is the case when the original tree still exists
in the index or worktree in untainted form.

• When a commit is prefixed with a yellow same, then that indicates that it is
no longer possible to create a commit with the exact same tree, but that it is
still possible to create a commit with the same patch-id. This would be the
case if you created a new commit with other changes, but the changes from
the original commit still exist in the index or working tree in untainted form.

• When a commit is prefixed with work, then that indicates that you reset HEAD
to an earlier commit, and that there are some staged and/or unstaged changes
(likely, but not necessarily) originating from that commit. However it is no
longer possible to create a new commit with the same tree or at least the same
patch-id because you have already made other changes.

• When a commit is prefixed with poof or gone, then that indicates that rebase
applied that commit but that you then reset HEAD to an earlier commit (likely to
split it up into multiple commits), and that there are no uncommitted changes.

• When a commit is prefixed with poof, then that indicates that it is no longer
reachable from HEAD, but that it has been replaced with one or more commits,
which together have the exact same effect.

• When a commit is prefixed with gone, then that indicates that it is no longer
reachable from HEAD and that we also cannot determine whether its changes
are still in effect in one or more new commits. They might be, but if so, then
there must also be other changes which makes it impossible to know for sure.

Do not worry if you do not fully understand the above. That’s okay, you will acquire a
good enough understanding through practice.

For other sequence operations such as cherry-picking, a similar section is displayed, but
they lack some of the features described above, due to limitations in the git commands used
to implement them. Most importantly these sequences only support "picking" a commit
but not other actions such as "rewording", and they do not keep track of the commits which
have already been applied.

6.10 Cherry Picking

Also see the git-cherry-pick(1) manpage.

A (magit-cherry-pick)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

When no cherry-pick or revert is in progress, then the transient features the following
suffix commands.

A A (magit-cherry-copy)
This command copies COMMITS from another branch onto the current branch.
If the region selects multiple commits, then those are copied, without prompt-
ing. Otherwise the user is prompted for a commit or range, defaulting to the
commit at point.

Chapter 6: Manipulating 99

A a (magit-cherry-apply)
This command applies the changes in COMMITS from another branch onto
the current branch. If the region selects multiple commits, then those are used,
without prompting. Otherwise the user is prompted for a commit or range,
defaulting to the commit at point.

This command also has a top-level binding, which can be invoked without using
the transient by typing a at the top-level.

The following commands not only apply some commits to some branch, but also remove
them from some other branch. The removal is performed using either git-update-ref or if
necessary git-rebase. Both applying commits as well as removing them using git-rebase
can lead to conflicts. If that happens, then these commands abort and you not only have
to resolve the conflicts but also finish the process the same way you would have to if these
commands didn’t exist at all.

A h (magit-cherry-harvest)
This command moves the selected COMMITS that must be located on another
BRANCH onto the current branch instead, removing them from the former.
When this command succeeds, then the same branch is current as before.

Applying the commits on the current branch or removing them from the other
branch can lead to conflicts. When that happens, then this command stops and
you have to resolve the conflicts and then finish the process manually.

A d (magit-cherry-donate)
This command moves the selected COMMITS from the current branch onto
another existing BRANCH, removing them from the former. When this com-
mand succeeds, then the same branch is current as before. HEAD is allowed to
be detached initially.

Applying the commits on the other branch or removing them from the current
branch can lead to conflicts. When that happens, then this command stops and
you have to resolve the conflicts and then finish the process manually.

A n (magit-cherry-spinout)
This command moves the selected COMMITS from the current branch onto a
new branch BRANCH, removing them from the former. When this command
succeeds, then the same branch is current as before.

Applying the commits on the other branch or removing them from the current
branch can lead to conflicts. When that happens, then this command stops and
you have to resolve the conflicts and then finish the process manually.

A s (magit-cherry-spinoff)
This command moves the selected COMMITS from the current branch onto a
new branch BRANCH, removing them from the former. When this command
succeeds, then the new branch is checked out.

Applying the commits on the other branch or removing them from the current
branch can lead to conflicts. When that happens, then this command stops and
you have to resolve the conflicts and then finish the process manually.

When a cherry-pick or revert is in progress, then the transient instead features the
following suffix commands.

Chapter 6: Manipulating 100

A A (magit-sequence-continue)
Resume the current cherry-pick or revert sequence.

A s (magit-sequence-skip)
Skip the stopped at commit during a cherry-pick or revert sequence.

A a (magit-sequence-abort)
Abort the current cherry-pick or revert sequence. This discards all changes
made since the sequence started.

6.10.1 Reverting

V (magit-revert)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

When no cherry-pick or revert is in progress, then the transient features the following
suffix commands.

V V (magit-revert-and-commit)
Revert a commit by creating a new commit. Prompt for a commit, defaulting
to the commit at point. If the region selects multiple commits, then revert all
of them, without prompting.

V v (magit-revert-no-commit)
Revert a commit by applying it in reverse to the working tree. Prompt for
a commit, defaulting to the commit at point. If the region selects multiple
commits, then revert all of them, without prompting.

When a cherry-pick or revert is in progress, then the transient instead features the
following suffix commands.

V V (magit-sequence-continue)
Resume the current cherry-pick or revert sequence.

V s (magit-sequence-skip)
Skip the stopped at commit during a cherry-pick or revert sequence.

V a (magit-sequence-abort)
Abort the current cherry-pick or revert sequence. This discards all changes
made since the sequence started.

6.11 Resetting

Also see the git-reset(1) manpage.

x (magit-reset-quickly)
Reset the HEAD and index to some commit read from the user and defaulting
to the commit at point, and possibly also reset the working tree. With a prefix
argument reset the working tree otherwise don’t.

X m (magit-reset-mixed)
Reset the HEAD and index to some commit read from the user and defaulting
to the commit at point. The working tree is kept as-is.

Chapter 6: Manipulating 101

X s (magit-reset-soft)
Reset the HEAD to some commit read from the user and defaulting to the commit
at point. The index and the working tree are kept as-is.

X h (magit-reset-hard)
Reset the HEAD, index, and working tree to some commit read from the user
and defaulting to the commit at point.

X k (magit-reset-keep)
Reset the HEAD, index, and working tree to some commit read from the user
and defaulting to the commit at point. Uncommitted changes are kept as-is.

X i (magit-reset-index)
Reset the index to some commit read from the user and defaulting to the commit
at point. Keep the HEAD and working tree as-is, so if the commit refers to the
HEAD, then this effectively unstages all changes.

X w (magit-reset-worktree)
Reset the working tree to some commit read from the user and defaulting to
the commit at point. Keep the HEAD and index as-is.

X f (magit-file-checkout)
Update file in the working tree and index to the contents from a revision. Both
the revision and file are read from the user.

6.12 Stashing

Also see the git-stash(1) manpage.

z (magit-stash)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

z z (magit-stash-both)
Create a stash of the index and working tree. Untracked files are included
according to infix arguments. One prefix argument is equivalent to --include-
untracked while two prefix arguments are equivalent to --all.

z i (magit-stash-index)
Create a stash of the index only. Unstaged and untracked changes are not
stashed.

z w (magit-stash-worktree)
Create a stash of unstaged changes in the working tree. Untracked files are
included according to infix arguments. One prefix argument is equivalent to
--include-untracked while two prefix arguments are equivalent to --all.

z x (magit-stash-keep-index)
Create a stash of the index and working tree, keeping index intact. Untracked
files are included according to infix arguments. One prefix argument is equiv-
alent to --include-untracked while two prefix arguments are equivalent to
--all.

Chapter 6: Manipulating 102

z Z (magit-snapshot-both)
Create a snapshot of the index and working tree. Untracked files are included
according to infix arguments. One prefix argument is equivalent to --include-
untracked while two prefix arguments are equivalent to --all.

z I (magit-snapshot-index)
Create a snapshot of the index only. Unstaged and untracked changes are not
stashed.

z W (magit-snapshot-worktree)
Create a snapshot of unstaged changes in the working tree. Untracked files are
included according to infix arguments. One prefix argument is equivalent to
--include-untracked while two prefix arguments are equivalent to --all-.

z a (magit-stash-apply)
Apply a stash to the working tree.

When using a Git release before v2.38.0, simply run git stash apply or with
a prefix argument git stash apply --index.

When using Git v2.38.0 or later, behave more intelligently:

First try git stash apply --index, which tries to preserve the index stored
in the stash, if any. This may fail because applying the stash could result in
conflicts and those have to be stored in the index, making it impossible to also
store the stash’s index there.

If git stash fails, then potentially fall back to using git apply. If the stash
does not touch any unstaged files, then pass --3way to that command. Oth-
erwise ask the user whether to use that argument or --reject. Customize
magit-no-confirm if you want to fall back to using --3way, without being
prompted.

z p (magit-stash-pop)
Apply a stash to the working tree. On complete success (if the stash can
be applied without any conflicts, and while preserving the stash’s index) then
remove the stash from stash list.

When using a Git release before v2.38.0, simply run git stash pop or with a
prefix argument git stash pop --index.

When using Git v2.38.0 or later, behave more intelligently:

First try git stash pop --index, which tries to preserve the index stored in the
stash, if any. This may fail because applying the stash could result in conflicts
and those have to be stored in the index, making it impossible to also store the
stash’s index there.

If git stash fails, then potentially fall back to using git apply. If the stash
does not touch any unstaged files, then pass --3way to that command. Oth-
erwise ask the user whether to use that argument or --reject. Customize
magit-no-confirm if you want to fall back to using --3way, without being
prompted.

z k (magit-stash-drop)
Remove a stash from the stash list. When the region is active, offer to drop all
contained stashes.

Chapter 6: Manipulating 103

z v (magit-stash-show)
Show all diffs of a stash in a buffer.

z b (magit-stash-branch)
Create and checkout a new branch from an existing stash. The new branch
starts at the commit that was current when the stash was created.

z B (magit-stash-branch-here)
Create and checkout a new branch from an existing stash. Use the current
branch or HEAD as the starting-point of the new branch. Then apply the stash,
dropping it if it applies cleanly.

z f (magit-stash-format-patch)
Create a patch from STASH.

k (magit-stash-clear)
Remove all stashes saved in REF’s reflog by deleting REF.

z l (magit-stash-list)
List all stashes in a buffer.

[User Option]magit-stashes-margin
This option specifies whether the margin is initially shown in stashes buffers and how
it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

• If INIT is non-nil, then the margin is shown initially.

• STYLE controls how to format the author or committer date. It can be one of
age (to show the age of the commit), age-abbreviated (to abbreviate the time
unit to a character), or a string (suitable for format-time-string) to show the
actual date. Option magit-log-margin-show-committer-date controls which
date is being displayed.

• WIDTH controls the width of the margin. This exists for forward compatibility
and currently the value should not be changed.

• AUTHOR controls whether the name of the author is also shown by default.

• AUTHOR-WIDTH has to be an integer. When the name of the author is shown,
then this specifies how much space is used to do so.

104

7 Transferring

7.1 Remotes

7.1.1 Remote Commands

The transient prefix command magit-remote is used to add remotes and to make changes
to existing remotes. This command only deals with remotes themselves, not with branches
or the transfer of commits. Those features are available from separate transient commands.

Also see the git-remote(1) manpage.

M (magit-remote)
This transient prefix command binds the following suffix commands and dis-
plays them in a temporary buffer until a suffix is invoked.

By default it also binds and displays the values of some remote-related Git
variables and allows changing their values.

[User Option]magit-remote-direct-configure
This option controls whether remote-related Git variables are accessible directly from
the transient magit-remote.

If t (the default) and a local branch is checked out, then magit-remote features the
variables for the upstream remote of that branch, or if HEAD is detached, for origin,
provided that exists.

If nil, then magit-remote-configure has to be used to do so.

M C (magit-remote-configure)
This transient prefix command binds commands that set the value of remote-
related variables and displays them in a temporary buffer until the transient is
exited.

With a prefix argument, this command always prompts for a remote.

Without a prefix argument this depends on whether it was invoked as a suffix of
magit-remote and on the magit-remote-direct-configure option. If magit-
remote already displays the variables for the upstream, then it does not make
sense to invoke another transient that displays them for the same remote. In
that case this command prompts for a remote.

The variables are described in Section 7.1.2 [Remote Git Variables], page 105.

M a (magit-remote-add)
This command add a remote and fetches it. The remote name and url are read
in the minibuffer.

M r (magit-remote-rename)
This command renames a remote. Both the old and the new names are read in
the minibuffer.

M u (magit-remote-set-url)
This command changes the url of a remote. Both the remote and the new url
are read in the minibuffer.

Chapter 7: Transferring 105

M k (magit-remote-remove)
This command deletes a remote, read in the minibuffer.

M p (magit-remote-prune)
This command removes stale remote-tracking branches for a remote read in the
minibuffer.

M P (magit-remote-prune-refspecs)
This command removes stale refspecs for a remote read in the minibuffer.

A refspec is stale if there no longer exists at least one branch on the remote that
would be fetched due to that refspec. A stale refspec is problematic because
its existence causes Git to refuse to fetch according to the remaining non-stale
refspecs.

If only stale refspecs remain, then this command offers to either delete
the remote or to replace the stale refspecs with the default refspec
("+refs/heads/*:refs/remotes/REMOTE/*").

This command also removes the remote-tracking branches that were created
due to the now stale refspecs. Other stale branches are not removed.

[User Option]magit-remote-add-set-remote.pushDefault
This option controls whether the user is asked whether they want to set
remote.pushDefault after adding a remote.

If ask, then users is always ask. If ask-if-unset, then the user is only if the variable
isn’t set already. If nil, then the user isn’t asked and the variable isn’t set. If the
value is a string, then the variable is set without the user being asked, provided that
the name of the added remote is equal to that string and the variable isn’t already
set.

7.1.2 Remote Git Variables

These variables can be set from the transient prefix command magit-remote-configure.
By default they can also be set from magit-remote. See Section 7.1.1 [Remote Commands],
page 104.

[Variable]remote.NAME.url
This variable specifies the url of the remote named NAME. It can have multiple
values.

[Variable]remote.NAME.fetch
The refspec used when fetching from the remote named NAME. It can have multiple
values.

[Variable]remote.NAME.pushurl
This variable specifies the url used for pushing to the remote named NAME. If it is
not specified, then remote.NAME.url is used instead. It can have multiple values.

[Variable]remote.NAME.push
The refspec used when pushing to the remote named NAME. It can have multiple
values.

Chapter 7: Transferring 106

[Variable]remote.NAME.tagOpts
This variable specifies what tags are fetched by default. If the value is --no-tags then
no tags are fetched. If the value is --tags, then all tags are fetched. If this variable
has no value, then only tags are fetched that are reachable from fetched branches.

7.2 Fetching

Also see the git-fetch(1) manpage. For information about the upstream and the push-
remote, see Section 6.6.1 [The Two Remotes], page 81.

f (magit-fetch)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

f p (magit-fetch-from-pushremote)
This command fetches from the current push-remote.

With a prefix argument or when the push-remote is either not configured or
unusable, then let the user first configure the push-remote.

f u (magit-fetch-from-upstream)
This command fetch from the upstream of the current branch.

If the upstream is configured for the current branch and names an existing
remote, then use that. Otherwise try to use another remote: If only a single
remote is configured, then use that. Otherwise if a remote named "origin"
exists, then use that.

If no remote can be determined, then this command is not available from the
magit-fetch transient prefix and invoking it directly results in an error.

f e (magit-fetch-other)
This command fetch from a repository read from the minibuffer.

f o (magit-fetch-branch)
This command fetches a branch from a remote, both of which are read from
the minibuffer.

f r (magit-fetch-refspec)
This command fetches from a remote using an explicit refspec, both of which
are read from the minibuffer.

f a (magit-fetch-all)
This command fetches from all remotes.

f m (magit-fetch-modules)
This command fetches all submodules. With a prefix argument, it acts as a
transient prefix command, allowing the caller to set options.

[User Option]magit-pull-or-fetch
By default fetch and pull commands are available from separate transient prefix com-
mand. Setting this to t adds some (but not all) of the above suffix commands to the
magit-pull transient.

Chapter 7: Transferring 107

If you do that, then you might also want to change the key binding for these prefix
commands, e.g.:

(setq magit-pull-or-fetch t)

(define-key magit-mode-map "f" 'magit-pull) ; was magit-fetch

(define-key magit-mode-map "F" nil) ; was magit-pull

7.3 Pulling

Also see the git-pull(1) manpage. For information about the upstream and the push-remote,
see Section 6.6.1 [The Two Remotes], page 81.

F (magit-pull)
This transient prefix command binds the following suffix commands and dis-
plays them in a temporary buffer until a suffix is invoked.

F p (magit-pull-from-pushremote)
This command pulls from the push-remote of the current branch.

With a prefix argument or when the push-remote is either not configured or
unusable, then let the user first configure the push-remote.

F u (magit-pull-from-upstream)
This command pulls from the upstream of the current branch.

With a prefix argument or when the upstream is either not configured or un-
usable, then let the user first configure the upstream.

F e (magit-pull-branch)
This command pulls from a branch read in the minibuffer.

7.4 Pushing

Also see the git-push(1) manpage. For information about the upstream and the push-
remote, see Section 6.6.1 [The Two Remotes], page 81.

P (magit-push)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

P p (magit-push-current-to-pushremote)
This command pushes the current branch to its push-remote.

With a prefix argument or when the push-remote is either not configured or
unusable, then let the user first configure the push-remote.

P u (magit-push-current-to-upstream)
This command pushes the current branch to its upstream branch.

With a prefix argument or when the upstream is either not configured or un-
usable, then let the user first configure the upstream.

P e (magit-push-current)
This command pushes the current branch to a branch read in the minibuffer.

Chapter 7: Transferring 108

P o (magit-push-other)
This command pushes an arbitrary branch or commit somewhere. Both the
source and the target are read in the minibuffer.

P r (magit-push-refspecs)
This command pushes one or multiple refspecs to a remote, both of which are
read in the minibuffer.

To use multiple refspecs, separate them with commas. Completion is only
available for the part before the colon, or when no colon is used.

P m (magit-push-matching)
This command pushes all matching branches to another repository.

If only one remote exists, then push to that. Otherwise prompt for a remote,
offering the remote configured for the current branch as default.

P t (magit-push-tags)
This command pushes all tags to another repository.

If only one remote exists, then push to that. Otherwise prompt for a remote,
offering the remote configured for the current branch as default.

P T (magit-push-tag)
This command pushes a tag to another repository.

One of the infix arguments, --force-with-lease, deserves a word of caution. It is
passed without a value, which means "permit a force push as long as the remote-tracking
branches match their counterparts on the remote end". If you’ve set up a tool to do
automatic fetches (Magit itself does not provide such functionality), using --force-with-

lease can be dangerous because you don’t actually control or know the state of the remote-
tracking refs. In that case, you should consider setting push.useForceIfIncludes to true

(available since Git 2.30).

Two more push commands exist, which by default are not available from the push
transient. See their doc-strings for instructions on how to add them to the transient.

[Command]magit-push-implicitly args
This command pushes somewhere without using an explicit refspec.

This command simply runs git push -v [ARGS]. ARGS are the infix arguments. No
explicit refspec arguments are used. Instead the behavior depends on at least these
Git variables: push.default, remote.pushDefault, branch.<branch>.pushRemote,
branch.<branch>.remote, branch.<branch>.merge, and remote.<remote>.push.

If you add this suffix to a transient prefix without explicitly specifying the description,
then an attempt is made to predict what this command will do. For example:

(transient-insert-suffix 'magit-push \"p\"

'(\"i\" magit-push-implicitly))"

[Command]magit-push-to-remote remote args
This command pushes to the remote REMOTE without using an explicit refspec.
The remote is read in the minibuffer.

This command simply runs git push -v [ARGS] REMOTE. ARGS are the infix argu-
ments. No refspec arguments are used. Instead the behavior depends on at least these

Chapter 7: Transferring 109

Git variables: push.default, remote.pushDefault, branch.<branch>.pushRemote,
branch.<branch>.remote, branch.<branch>.merge, and remote.<remote>.push.

7.5 Plain Patches

W (magit-patch)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

W c (magit-patch-create)
This command creates patches for a set commits. If the region marks several
commits, then it creates patches for all of them. Otherwise it functions as a
transient prefix command, which features several infix arguments and binds
itself as a suffix command. When this command is invoked as a suffix of itself,
then it creates a patch using the specified infix arguments.

w a (magit-patch-apply)
This command applies a patch. This is a transient prefix command, which
features several infix arguments and binds itself as a suffix command. When
this command is invoked as a suffix of itself, then it applies a patch using the
specified infix arguments.

W s (magit-patch-save)
This command creates a patch from the current diff.

Inside magit-diff-mode or magit-revision-mode buffers, C-x C-w is also
bound to this command.

It is also possible to save a plain patch file by using C-x C-w inside a magit-diff-mode

or magit-revision-mode buffer.

7.6 Maildir Patches

Also see the git-am(1) manpage. and the git-apply(1) manpage.

w (magit-am)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

w w (magit-am-apply-patches)
This command applies one or more patches. If the region marks files, then
those are applied as patches. Otherwise this command reads a file-name in the
minibuffer, defaulting to the file at point.

w m (magit-am-apply-maildir)
This command applies patches from a maildir.

w a (magit-patch-apply)
This command applies a plain patch. For a longer description see Section 7.5
[Plain Patches], page 109. This command is only available from the magit-am

transient for historic reasons.

Chapter 7: Transferring 110

When an "am" operation is in progress, then the transient instead features the following
suffix commands.

w w (magit-am-continue)
This command resumes the current patch applying sequence.

w s (magit-am-skip)
This command skips the stopped at patch during a patch applying sequence.

w a (magit-am-abort)
This command aborts the current patch applying sequence. This discards all
changes made since the sequence started.

111

8 Miscellaneous

8.1 Tagging

Also see the git-tag(1) manpage.

t (magit-tag)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

t t (magit-tag-create)
This command creates a new tag with the given NAME at REV. With a prefix
argument it creates an annotated tag.

t r (magit-tag-release)
This commands creates a release tag. It assumes that release tags match magit-

release-tag-regexp.

First it prompts for the name of the new tag using the highest existing tag
as initial input and leaving it to the user to increment the desired part of the
version string. If you use unconventional release tags or version numbers (e.g.,
v1.2.3-custom.1), you can set the magit-release-tag-regexp and magit-

tag-version-regexp-alist variables.

If --annotate is enabled then it prompts for the message of the new tag. The
proposed tag message is based on the message of the highest tag, provided
that that contains the corresponding version string and substituting the new
version string for that. Otherwise it proposes something like "Foo-Bar 1.2.3",
given, for example, a TAG "v1.2.3" and a repository located at something like
"/path/to/foo-bar".

t k (magit-tag-delete)
This command deletes one or more tags. If the region marks multiple tags (and
nothing else), then it offers to delete those. Otherwise, it prompts for a single
tag to be deleted, defaulting to the tag at point.

t p (magit-tag-prune)
This command offers to delete tags missing locally from REMOTE, and vice
versa.

8.2 Notes

Also see the git-notes(1) manpage.

T (magit-notes)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

T T (magit-notes-edit)
Edit the note attached to a commit, defaulting to the commit at point.

Chapter 8: Miscellaneous 112

By default use the value of Git variable core.notesRef or
"refs/notes/commits" if that is undefined.

T r (magit-notes-remove)
Remove the note attached to a commit, defaulting to the commit at point.

By default use the value of Git variable core.notesRef or
"refs/notes/commits" if that is undefined.

T p (magit-notes-prune)
Remove notes about unreachable commits.

It is possible to merge one note ref into another. That may result in conflicts which have
to resolved in the temporary worktree ".git/NOTESMERGEWORKTREE".

T m (magit-notes-merge)
Merge the notes of a ref read from the user into the current notes ref.
The current notes ref is the value of Git variable core.notesRef or
"refs/notes/commits" if that is undefined.

When a notes merge is in progress then the transient features the following suffix com-
mands, instead of those listed above.

T c (magit-notes-merge-commit)
Commit the current notes ref merge, after manually resolving conflicts.

T a (magit-notes-merge-abort)
Abort the current notes ref merge.

The following variables control what notes reference magit-notes-*, git notes and git

show act on and display. Both the local and global values are displayed and can be modified.

[Variable]core.notesRef
This variable specifies the notes ref that is displayed by default and which commands
act on by default.

[Variable]notes.displayRef
This variable specifies additional notes ref to be displayed in addition to the ref
specified by core.notesRef. It can have multiple values and may end with * to
display all refs in the refs/notes/ namespace (or ** if some names contain slashes).

8.3 Submodules

Also see the git-submodule(1) manpage.

8.3.1 Listing Submodules

The command magit-list-submodules displays a list of the current repository’s submod-
ules in a separate buffer. It’s also possible to display information about submodules di-
rectly in the status buffer of the super-repository by adding magit-insert-modules to the
hook magit-status-sections-hook as described in Section 5.1.5 [Status Module Sections],
page 38.

Chapter 8: Miscellaneous 113

[Command]magit-list-submodules
This command displays a list of the current repository’s populated submodules in a
separate buffer.

It can be invoked by pressing RET on the section titled "Modules".

[User Option]magit-submodule-list-columns
This option controls what columns are displayed by the command magit-list-

submodules and how they are displayed.

Each element has the form (HEADER WIDTH FORMAT PROPS).

HEADER is the string displayed in the header. WIDTH is the width of the column.
FORMAT is a function that is called with one argument, the repository identification
(usually its basename), and with default-directory bound to the toplevel of its
working tree. It has to return a string to be inserted or nil. PROPS is an alist that
supports the keys :right-align, :pad-right and :sort.

The :sort function has a weird interface described in the docstring of tabulated-
list--get-sort. Alternatively < and magit-repolist-version< can be used as
those functions are automatically replaced with functions that satisfy the interface.
Set :sort to nil to inhibit sorting; if unspecified, then the column is sortable using
the default sorter.

You may wish to display a range of numeric columns using just one character per
column and without any padding between columns, in which case you should use an
appropriate HEADER, set WIDTH to 1, and set :pad-right to 9. + is substituted
for numbers higher than 9.

8.3.2 Submodule Transient

o (magit-submodule)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

Some of the below commands default to act on the modules that are selected using the
region. For brevity their description talk about "the selected modules", but if no modules
are selected, then they act on the current module instead, or if point isn’t on a module,
then the read a single module to act on. With a prefix argument these commands ignore
the selection and the current module and instead act on all suitable modules.

o a (magit-submodule-add)
This commands adds the repository at URL as a module. Optional PATH is
the path to the module relative to the root of the super-project. If it is nil

then the path is determined based on URL.

o r (magit-submodule-register)
This command registers the selected modules by copying their urls from ".git-
modules" to "$GITDIR/config". These values can then be edited before run-
ning magit-submodule-populate. If you don’t need to edit any urls, then use
the latter directly.

Chapter 8: Miscellaneous 114

o p (magit-submodule-populate)
This command creates the working directory or directories of the selected mod-
ules, checking out the recorded commits.

o u (magit-submodule-update)
This command updates the selected modules checking out the recorded com-
mits.

o s (magit-submodule-synchronize)
This command synchronizes the urls of the selected modules, copying the values
from ".gitmodules" to the ".git/config" of the super-project as well those of the
modules.

o d (magit-submodule-unpopulate)
This command removes the working directory of the selected modules.

o l (magit-list-submodules)
This command displays a list of the current repository’s modules.

o f (magit-fetch-modules)
This command fetches all populated modules. With a prefix argument, it acts
as a transient prefix command, allowing the caller to set options.

Also fetch the super-repository, because git fetch does not support not doing
that.

8.4 Subtree

Also see the git-subtree(1) manpage.

O (magit-subtree)
This transient prefix command binds the two sub-transients; one for importing
a subtree and one for exporting a subtree.

O i (magit-subtree-import)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

The suffixes of this command import subtrees.

If the --prefix argument is set, then the suffix commands use that prefix
without prompting the user. If it is unset, then they read the prefix in the
minibuffer.

O i a (magit-subtree-add)
This command adds COMMIT from REPOSITORY as a new subtree at PRE-
FIX.

O i c (magit-subtree-add-commit)
This command add COMMIT as a new subtree at PREFIX.

O i m (magit-subtree-merge)
This command merges COMMIT into the PREFIX subtree.

Chapter 8: Miscellaneous 115

O i f (magit-subtree-pull)
This command pulls COMMIT from REPOSITORY into the PREFIX subtree.

O e (magit-subtree-export)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

The suffixes of this command export subtrees.

If the --prefix argument is set, then the suffix commands use that prefix
without prompting the user. If it is unset, then they read the prefix in the
minibuffer.

O e p (magit-subtree-push)
This command extract the history of the subtree PREFIX and pushes it to
REF on REPOSITORY.

O e s (magit-subtree-split)
This command extracts the history of the subtree PREFIX.

8.5 Worktree

Also see the git-worktree(1) manpage.

Z (magit-worktree)
This transient prefix command binds the following suffix commands and dis-
plays them in a temporary buffer until a suffix is invoked.

Z b (magit-worktree-checkout)
Checkout BRANCH in a new worktree at PATH.

Z c (magit-worktree-branch)
Create a new BRANCH and check it out in a new worktree at PATH.

Z m (magit-worktree-move)
Move an existing worktree to a new PATH.

Z k (magit-worktree-delete)
Delete a worktree, defaulting to the worktree at point. The primary worktree
cannot be deleted.

Z g (magit-worktree-status)
Show the status for the worktree at point.

If there is no worktree at point, then read one in the minibuffer. If the worktree
at point is the one whose status is already being displayed in the current buffer,
then show it in Dired instead.

If you want the status buffer to list worktrees, add the function magit-insert-

worktrees to magit-status-sections-hook as described in Section 5.1.1 [Status
Sections], page 34. If there is only one worktree, this function inserts nothing.

Chapter 8: Miscellaneous 116

8.6 Sparse checkouts

Sparse checkouts provide a way to restrict the working tree to a subset of directories. See
the git-sparse-checkout(1) manpage.

Warning: Git introduced the git sparse-checkout command in version 2.25 and still
advertises it as experimental and subject to change. Magit’s interface should be considered
the same. In particular, if Git introduces a backward incompatible change, Magit’s sparse
checkout functionality may be updated in a way that requires a more recent Git version.

> (magit-sparse-checkout)
This transient prefix command binds the following suffix commands and dis-
plays them in a temporary buffer until a suffix is invoked.

> e (magit-sparse-checkout-enable)
This command initializes a sparse checkout that includes only the files in the
top-level directory.

Note that magit-sparse-checkout-set and magit-sparse-checkout-add au-
tomatically initialize a sparse checkout if necessary. However, you may want to
call magit-sparse-checkout-enable explicitly to re-initialize a sparse check-
out after calling magit-sparse-checkout-disable, to pass additional argu-
ments to git sparse-checkout init, or to execute the initialization asyn-
chronously.

> s (magit-sparse-checkout-set)
This command takes a list of directories and configures the sparse checkout to
include only files in those subdirectories. Any previously included directories
are excluded unless they are in the provided list of directories.

> a (magit-sparse-checkout-add)
This command is like magit-sparse-checkout-set, but instead adds the spec-
ified list of directories to the set of directories that is already included in the
sparse checkout.

> r (magit-sparse-checkout-reapply)
This command applies the currently configured sparse checkout patterns to the
working tree. This is useful to call if excluded files have been checked out after
operations such as merging or rebasing.

> d (magit-sparse-checkout-disable)
This command restores the full checkout. To return to the previous sparse
checkout, call magit-sparse-checkout-enable.

A sparse checkout can also be initiated when cloning a repository by using the magit-

clone-sparse command in the magit-clone transient (see Section 6.2 [Cloning Reposi-
tory], page 68).

If you want the status buffer to indicate when a sparse checkout is enabled, add the
function magit-sparse-checkout-insert-header to magit-status-headers-hook.

8.7 Bundle

Also see the git-bundle(1) manpage.

Chapter 8: Miscellaneous 117

[Command]magit-bundle
This transient prefix command binds several suffix commands for running git bundle

subcommands and displays them in a temporary buffer until a suffix is invoked.

8.8 Common Commands

[Command]magit-switch-to-repository-buffer

[Command]magit-switch-to-repository-buffer-other-window

[Command]magit-switch-to-repository-buffer-other-frame

[Command]magit-display-repository-buffer
These commands read any existing Magit buffer that belongs to the current repository
from the user and then switch to the selected buffer (without refreshing it).

The last variant uses magit-display-buffer to do so and thus respects magit-

display-buffer-function.

These are some of the commands that can be used in all buffers whose major-modes
derive from magit-mode. There are other common commands beside the ones below, but
these didn’t fit well anywhere else.

C-w (magit-copy-section-value)
This command saves the value of the current section to the kill-ring, and,
provided that the current section is a commit, branch, or tag section, it also
pushes the (referenced) revision to the magit-revision-stack.

When the current section is a branch or a tag, and a prefix argument is used,
then it saves the revision at its tip to the kill-ring instead of the reference
name.

When the region is active, this command saves that to the kill-ring, like
kill-ring-save would, instead of behaving as described above. If a prefix
argument is used and the region is within a hunk, then it strips the diff marker
column and keeps only either the added or removed lines, depending on the
sign of the prefix argument.

M-w (magit-copy-buffer-revision)
This command saves the revision being displayed in the current buffer to the
kill-ring and also pushes it to the magit-revision-stack. It is mainly
intended for use in magit-revision-mode buffers, the only buffers where it is
always unambiguous exactly which revision should be saved.

Most other Magit buffers usually show more than one revision, in some way or
another, so this command has to select one of them, and that choice might not
always be the one you think would have been the best pick.

Outside of Magit M-w and C-w are usually bound to kill-ring-save and kill-region,
and these commands would also be useful in Magit buffers. Therefore when the region is
active, then both of these commands behave like kill-ring-save instead of as described
above.

Chapter 8: Miscellaneous 118

8.9 Wip Modes

Git keeps committed changes around long enough for users to recover changes they have
accidentally deleted. It does so by not garbage collecting any committed but no longer
referenced objects for a certain period of time, by default 30 days.

But Git does not keep track of uncommitted changes in the working tree and not even
the index (the staging area). Because Magit makes it so convenient to modify uncommitted
changes, it also makes it easy to shoot yourself in the foot in the process.

For that reason Magit provides a global mode that saves tracked files to work-in-progress
references after or before certain actions. (At present untracked files are never saved and
for technical reasons nothing is saved before the first commit has been created).

Two separate work-in-progress references are used to track the state of the index and
of the working tree: refs/wip/index/<branchref> and refs/wip/wtree/<branchref>,
where <branchref> is the full ref of the current branch, e.g., refs/heads/master. When
the HEAD is detached then HEAD is used in place of <branchref>.

Checking out another branch (or detaching HEAD) causes the use of different wip refs for
subsequent changes.

[User Option]magit-wip-mode
When this mode is enabled, then uncommitted changes are committed to dedicated
work-in-progress refs whenever appropriate (i.e., when dataloss would be a possibility
otherwise).

Setting this variable directly does not take effect; either use the Custom interface to
do so or call the respective mode function.

To view the log for a branch and its wip refs use the commands magit-wip-log and
magit-wip-log-current. You should use --graph when using these commands.

[Command]magit-wip-log
This command shows the log for a branch and its wip refs. With a negative prefix
argument only the worktree wip ref is shown.

The absolute numeric value of the prefix argument controls how many "branches" of
each wip ref are shown. This is only relevant if the value of magit-wip-merge-branch
is nil.

[Command]magit-wip-log-current
This command shows the log for the current branch and its wip refs. With a negative
prefix argument only the worktree wip ref is shown.

The absolute numeric value of the prefix argument controls how many "branches" of
each wip ref are shown. This is only relevant if the value of magit-wip-merge-branch
is nil.

X w (magit-reset-worktree)
This command resets the working tree to some commit read from the user and
defaulting to the commit at point, while keeping the HEAD and index as-is.

This can be used to restore files to the state committed to a wip ref. Note that
this will discard any unstaged changes that might have existed before invoking

Chapter 8: Miscellaneous 119

this command (but of course only after committing that to the working tree
wip ref).

Note that even if you enable magit-wip-mode this won’t give you perfect protection.
The most likely scenario for losing changes despite the use of magit-wip-mode is making a
change outside Emacs and then destroying it also outside Emacs. In some such a scenario,
Magit, being an Emacs package, didn’t get the opportunity to keep you from shooting
yourself in the foot.

When you are unsure whether Magit did commit a change to the wip refs, then you can
explicitly request that all changes to all tracked files are being committed.

M-x magit-wip-commit

This command commits all changes to all tracked files to the index and working
tree work-in-progress refs. Like the modes described above, it does not commit
untracked files, but it does check all tracked files for changes. Use this command
when you suspect that the modes might have overlooked a change made outside
Emacs/Magit.

[User Option]magit-wip-namespace
The namespace used for work-in-progress refs. It has to end with a slash. The wip refs
are named <namespace>index/<branchref> and <namespace>wtree/<branchref>.
When snapshots are created while the HEAD is detached then HEAD is used in place of
<branchref>.

[User Option]magit-wip-mode-lighter
Mode-line lighter for magit-wip--mode.

8.9.1 Wip Graph

[User Option]magit-wip-merge-branch
This option controls whether the current branch is merged into the wip refs after a
new commit was created on the branch.

If non-nil and the current branch has new commits, then it is merged into the wip
ref before creating a new wip commit. This makes it easier to inspect wip history and
the wip commits are never garbage collected.

If nil and the current branch has new commits, then the wip ref is reset to the tip
of the branch before creating a new wip commit. With this setting wip commits are
eventually garbage collected.

If immediately, then use git-commit-post-finish-hook to create the merge com-
mit. This is discouraged because it can lead to a race condition, e.g., during rebases.

When magit-wip-merge-branch is t, then the history looks like this:

----*--*--*--* refs/wip/index/refs/heads/master

/ / /

A-----B-----C refs/heads/master

When magit-wip-merge-branch is nil, then creating a commit on the real branch and
then making a change causes the wip refs to be recreated to fork from the new commit. But
the old commits on the wip refs are not lost. They are still available from the reflog. To

Chapter 8: Miscellaneous 120

make it easier to see when the fork point of a wip ref was changed, an additional commit with
the message "restart autosaving" is created on it (xxO commits below are such boundary
commits).

Starting with

BI0---BI1 refs/wip/index/refs/heads/master

/

A---B refs/heads/master

\

BW0---BW1 refs/wip/wtree/refs/heads/master

and committing the staged changes and editing and saving a file would result in

BI0---BI1 refs/wip/index/refs/heads/master

/

A---B---C refs/heads/master

\ \

\ CW0---CW1 refs/wip/wtree/refs/heads/master

\

BW0---BW1 refs/wip/wtree/refs/heads/master@{2}

The fork-point of the index wip ref is not changed until some change is being staged.
Likewise just checking out a branch or creating a commit does not change the fork-point of
the working tree wip ref. The fork-points are not adjusted until there actually is a change
that should be committed to the respective wip ref.

8.10 Commands for Buffers Visiting Files

By default Magit defines a few global key bindings. These bindings are a compromise
between providing no bindings at all and providing the better bindings I would have liked to
use instead. Magit cannot provide the set of recommended bindings by default because those
key sequences are strictly reserved for bindings added by the user. Also see Section 9.2.3
[Global Bindings], page 129, and Section “Key Binding Conventions” in elisp.

To use the recommended bindings, add this to your init file and restart Emacs.

(setq magit-define-global-key-bindings 'recommended)

If you don’t want Magit to add any bindings to the global keymap at all, add this to
your init file and restart Emacs.

(setq magit-define-global-key-bindings nil)

Chapter 8: Miscellaneous 121

C-c f (magit-file-dispatch)
C-c f s (magit-stage-file)
C-c f s (magit-stage-buffer-file)
C-c f u (magit-unstage-file)
C-c f u (magit-unstage-buffer-file)
C-c f , x (magit-file-untrack)
C-c f , r (magit-file-rename)
C-c f , k (magit-file-delete)
C-c f , c (magit-file-checkout)
C-c f D (magit-diff)
C-c f d (magit-diff-buffer-file)
C-c f L (magit-log)
C-c f l (magit-log-buffer-file)
C-c f t (magit-log-trace-definition)
C-c f M (magit-log-merged)
C-c f B (magit-blame)
C-c f b (magit-blame-additions)
C-c f r (magit-blame-removal)
C-c f f (magit-blame-reverse)
C-c f m (magit-blame-echo)
C-c f q (magit-blame-quit)
C-c f p (magit-blob-previous)
C-c f n (magit-blob-next)
C-c f v (magit-find-file)
C-c f V (magit-blob-visit-file)
C-c f g (magit-status-here)
C-c f G (magit-display-repository-buffer)
C-c f c (magit-commit)
C-c f e (magit-edit-line-commit)

Each of these commands is documented individually right below, alongside their
default key bindings. The bindings shown above are the recommended bindings,
which you can enable by following the instructions further up.

C-c M-g (magit-file-dispatch)
This transient prefix command binds the following suffix commands and dis-
plays them in a temporary buffer until a suffix is invoked.

C-c M-g s (magit-stage-file)
C-c M-g s (magit-stage-buffer-file)

Stage all changes to the file being visited in the current buffer. When not
visiting a file, then the first command is used, which prompts for a file.

C-c M-g u (magit-unstage-file)
C-c M-g u (magit-unstage-buffer-file)

Unstage all changes to the file being visited in the current buffer. When not
visiting a file, then the first command is used, which prompts for a file.

C-c M-g , x (magit-file-untrack)
This command untracks a file read from the user, defaulting to the visited file.

Chapter 8: Miscellaneous 122

C-c M-g , r (magit-file-rename)
This command renames a file read from the user, defaulting to the visited file.

C-c M-g , k (magit-file-delete)
This command deletes a file read from the user, defaulting to the visited file.

C-c M-g , c (magit-file-checkout)
This command updates a file in the working tree and index to the contents from
a revision. Both the revision and file are read from the user.

C-c M-g D (magit-diff)
This transient prefix command binds several diff suffix commands and infix
arguments and displays them in a temporary buffer until a suffix is invoked.
See Section 5.4 [Diffing], page 48.

This is the same command that d is bound to in Magit buffers. If this command
is invoked from a file-visiting buffer, then the initial value of the option (--)
that limits the diff to certain file(s) is set to the visited file.

C-c M-g d (magit-diff-buffer-file)
This command shows the diff for the file of blob that the current buffer visits.

[User Option]magit-diff-buffer-file-locked
This option controls whether magit-diff-buffer-file uses a dedicated buffer. See
Section 4.1 [Modes and Buffers], page 8.

C-c M-g L (magit-log)
This transient prefix command binds several log suffix commands and infix
arguments and displays them in a temporary buffer until a suffix is invoked.
See Section 5.3 [Logging], page 42.

This is the same command that l is bound to in Magit buffers. If this command
is invoked from a file-visiting buffer, then the initial value of the option (--)
that limits the log to certain file(s) is set to the visited file.

C-c M-g l (magit-log-buffer-file)
This command shows the log for the file of blob that the current buffer visits.
Renames are followed when a prefix argument is used or when --follow is an
active log argument. When the region is active, the log is restricted to the
selected line range.

[User Option]magit-log-buffer-file-locked
This option controls whether magit-log-buffer-file uses a dedicated buffer. See
Section 4.1 [Modes and Buffers], page 8.

C-c M-g t (magit-log-trace-definition)
This command shows the log for the definition at point.

C-c M-g M (magit-log-merged)
This command reads a commit and a branch in shows a log concerning the
merge of the former into the latter. This shows multiple commits even in case
of a fast-forward merge.

Chapter 8: Miscellaneous 123

C-c M-g B (magit-blame)
This transient prefix command binds all blaming suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked.

For more information about this and the following commands also see Sec-
tion 5.9 [Blaming], page 64.

In addition to the magit-blame sub-transient, the dispatch transient also binds
several blaming suffix commands directly. See Section 5.9 [Blaming], page 64,
for information about those commands and bindings.

C-c M-g p (magit-blob-previous)
This command visits the previous blob which modified the current file.

C-c M-g n (magit-blob-next)
This command visits the next blob which modified the current file.

C-c M-g v (magit-find-file)
This command reads a revision and file and visits the respective blob.

C-c M-g V (magit-blob-visit-file)
This command visits the file from the working tree, corresponding to the current
blob. When visiting a blob or the version from the index, then it goes to the
same location in the respective file in the working tree.

C-c M-g g (magit-status-here)
This command displays the status of the current repository in a buffer, like
magit-status does. Additionally it tries to go to the position in that buffer,
which corresponds to the position in the current file-visiting buffer (if any).

Before doing so, save all file-visiting buffers belonging to the current repository
without prompting.

C-c M-g G (magit-display-repository-buffer)
This command reads and displays a Magit buffer belonging to the current repos-
itory, without refreshing it.

C-c M-g c (magit-commit)
This transient prefix command binds the following suffix commands along with
the appropriate infix arguments and displays them in a temporary buffer until
a suffix is invoked. See Section 6.5.1 [Initiating a Commit], page 73.

C-c M-g e (magit-edit-line-commit)
This command makes the commit editable that added the current line.

With a prefix argument it makes the commit editable that removes the line,
if any. The commit is determined using git blame and made editable using
git rebase --interactive if it is reachable from HEAD, or by checking out the
commit (or a branch that points at it) otherwise.

8.11 Minor Mode for Buffers Visiting Blobs

The magit-blob-mode enables certain Magit features in blob-visiting buffers. Such buffers
can be created using magit-find-file and some of the commands mentioned below, which

Chapter 8: Miscellaneous 124

also take care of turning on this minor mode. Currently this mode only establishes a few
key bindings, but this might be extended.

p (magit-blob-previous)
This command visits the previous blob that modified the current file.

n (magit-blob-next)
This command visit the next blob that modified the current file.

q (magit-bury-or-kill-buffer)
This command buries the current buffer, if that is being displayed in multiple
windows and/or when a prefix argument is used. If neither is the case, it instead
kills the current buffer.

You might want to bind u to another command. Suitable commands include bury-

buffer, magit-bury-buffer and magit-kill-this-buffer.

125

9 Customizing

Both Git and Emacs are highly customizable. Magit is both a Git porcelain as well as an
Emacs package, so it makes sense to customize it using both Git variables as well as Emacs
options. However this flexibility doesn’t come without problems, including but not limited
to the following.

• Some Git variables automatically have an effect in Magit without requiring any explicit
support. Sometimes that is desirable - in other cases, it breaks Magit.

When a certain Git setting breaks Magit but you want to keep using that setting on the
command line, then that can be accomplished by overriding the value for Magit only
by appending something like ("-c" "some.variable=compatible-value") to magit-

git-global-arguments.

• Certain settings like fetch.prune=true are respected by Magit commands (because
they simply call the respective Git command) but their value is not reflected in the
respective transient buffers. In this case the --prune argument in magit-fetch might
be active or inactive, but that doesn’t keep the Git variable from being honored by the
suffix commands anyway. So pruning might happen despite the --prune arguments
being displayed in a way that seems to indicate that no pruning will happen.

I intend to address these and similar issues in a future release.

9.1 Per-Repository Configuration

Magit can be configured on a per-repository level using both Git variables as well as Emacs
options.

To set a Git variable for one repository only, simply set it in /path/to/repo/.git/config
instead of $HOME/.gitconfig or /etc/gitconfig. See the git-config(1) manpage.

Similarly, Emacs options can be set for one repository only by editing
/path/to/repo/.dir-locals.el. See Section “Directory Variables” in emacs. For
example to disable automatic refreshes of file-visiting buffers in just one huge repository
use this:

• /path/to/huge/repo/.dir-locals.el

((nil . ((magit-refresh-buffers . nil))))

It might only be costly to insert certain information into Magit buffers for repositories
that are exceptionally large, in which case you can disable the respective section inserters
just for that repository:

• /path/to/tag/invested/repo/.dir-locals.el

((magit-status-mode

. ((eval . (magit-disable-section-inserter 'magit-insert-tags-header)))))

[Function]magit-disable-section-inserter fn
This function disables the section inserter FN in the current repository. It is only
intended for use in .dir-locals.el and .dir-locals-2.el.

If you want to apply the same settings to several, but not all, repositories then keeping
the repository-local config files in sync would quickly become annoying. To avoid that you

Chapter 9: Customizing 126

can create config files for certain classes of repositories (e.g., "huge repositories") and then
include those files in the per-repository config files. For example:

• /path/to/huge/repo/.git/config

[include]

path = /path/to/huge-gitconfig

• /path/to/huge-gitconfig

[status]

showUntrackedFiles = no

• $HOME/.emacs.d/init.el

(dir-locals-set-class-variables 'huge-git-repository

'((nil . ((magit-refresh-buffers . nil)))))

(dir-locals-set-directory-class

"/path/to/huge/repo/" 'huge-git-repository)

9.2 Essential Settings

The next three sections list and discuss several variables that many users might want to
customize, for safety and/or performance reasons.

9.2.1 Safety

This section discusses various variables that you might want to change (or not change) for
safety reasons.

Git keeps committed changes around long enough for users to recover changes they have
accidentally been deleted. It does not do the same for uncommitted changes in the working
tree and not even the index (the staging area). Because Magit makes it so easy to modify
uncommitted changes, it also makes it easy to shoot yourself in the foot in the process. For
that reason Magit provides three global modes that save tracked files to work-in-progress
references after or before certain actions. See Section 8.9 [Wip Modes], page 118.

These modes are not enabled by default because of performance concerns. Instead a
lot of potentially destructive commands require confirmation every time they are used. In
many cases this can be disabled by adding a symbol to magit-no-confirm (see Section 4.5.2
[Completion and Confirmation], page 26). If you enable the various wip modes then you
should add safe-with-wip to this list.

Similarly it isn’t necessary to require confirmation before moving a file to the system
trash - if you trashed a file by mistake then you can recover it from there. Option magit-

delete-by-moving-to-trash controls whether the system trash is used, which is the case
by default. Nevertheless, trash isn’t a member of magit-no-confirm - you might want to
change that.

By default buffers visiting files are automatically reverted when the visited file changes
on disk. This isn’t as risky as it might seem, but to make an informed decision you should
see [Risk of Reverting Automatically], page 14.

Chapter 9: Customizing 127

9.2.2 Performance

After Magit has run git for side-effects, it also refreshes the current Magit buffer and the
respective status buffer. This is necessary because otherwise outdated information might be
displayed without the user noticing. Magit buffers are updated by recreating their content
from scratch, which makes updating simpler and less error-prone, but also more costly.
Keeping it simple and just re-creating everything from scratch is an old design decision and
departing from that will require major refactoring.

Meanwhile you can tell Magit to only automatically refresh the current Magit buffer, but
not the status buffer. If you do that, then the status buffer is only refreshed automatically
if it is the current buffer.

(setq magit-refresh-status-buffer nil)

You should also check whether any third-party packages have added anything to magit-

refresh-buffer-hook, magit-pre-refresh-hook, and magit-post-refresh-hook. If so,
then check whether those additions impact performance significantly.

Magit can be told to refresh buffers verbosely using M-x magit-toggle-verbose-

refresh. Enabling this helps figuring out which sections are bottlenecks. Each line printed
to the *Messages* buffer contains a section name, the number of seconds it took to show
this section, and from 0 to 2 exclamation marks: the more exclamation marks the slower
the section is.

Magit also reverts buffers for visited files located inside the current repository when
the visited file changes on disk. That is implemented on top of auto-revert-mode from
the built-in library autorevert. To figure out whether that impacts performance, check
whether performance is significantly worse, when many buffers exist and/or when some
buffers visit files using TRAMP. If so, then this should help.

(setq auto-revert-buffer-list-filter

'magit-auto-revert-repository-buffer-p)

For alternative approaches see Section 4.1.6 [Automatic Reverting of File-Visiting
Buffers], page 13.

If you have enabled any features that are disabled by default, then you should check
whether they impact performance significantly. It’s likely that they were not enabled by
default because it is known that they reduce performance at least in large repositories.

If performance is only slow inside certain unusually large repositories, then you might
want to disable certain features on a per-repository or per-repository-class basis only. See
Section 9.1 [Per-Repository Configuration], page 125. For example it takes a long time
to determine the next and current tag in repository with exceptional numbers of tags. It
would therefore be a good idea to disable magit-insert-tags-headers, as explained at
the mentioned node.

Log Performance

When showing logs, Magit limits the number of commits initially shown in the hope that
this avoids unnecessary work. When --graph is used, then this unfortunately does not have
the desired effect for large histories. Junio, Git’s maintainer, said on the Git mailing list
(https://www.spinics.net/lists/git/msg232230.html): "--graph wants to compute
the whole history and the max-count only affects the output phase after --graph does its
computation".

https://www.spinics.net/lists/git/msg232230.html

Chapter 9: Customizing 128

In other words, it’s not that Git is slow at outputting the differences, or that Magit is
slow at parsing the output - the problem is that Git first goes outside and has a smoke.

We actually work around this issue by limiting the number of commits not only by using
-<N> but by also using a range. But unfortunately that’s not always possible.

When more than a few thousand commits are shown, then the use of --graph can slow
things down.

Using --color --graph is even slower. Magit uses code that is part of Emacs to turn
control characters into faces. That code is pretty slow and this is quite noticeable when
showing a log with many branches and merges. For that reason --color is not enabled by
default anymore. Consider leaving it at that.

Diff Performance

If diffs are slow, then consider turning off some optional diff features by setting all
or some of the following variables to nil: magit-diff-highlight-indentation,
magit-diff-highlight-trailing, magit-diff-paint-whitespace, magit-diff-

highlight-hunk-body, and magit-diff-refine-hunk.

When showing a commit instead of some arbitrary diff, then some additional informa-
tion is displayed. Calculating this information can be quite expensive given certain cir-
cumstances. If looking at a commit using magit-revision-mode takes considerably more
time than looking at the same commit in magit-diff-mode, then consider setting magit-

revision-insert-related-refs to nil.

When you are often confronted with diffs that contain deleted files, then you might
want to enable the --irreversible-delete argument. If you do that then diffs still show
that a file was deleted but without also showing the complete deleted content of the file.
This argument is not available by default, see Section “Enabling and Disabling Suffixes”
in transient. Once you have done that you should enable it and save that setting, see
Section “Saving Values” in transient. You should do this in both the diff (d) and the diff
refresh (D) transient popups.

Refs Buffer Performance

When refreshing the "references buffer" is slow, then that’s usually because several hundred
refs are being displayed. The best way to address that is to display fewer refs, obviously.

If you are not, or only mildly, interested in seeing the list of tags, then start by not
displaying them:

(remove-hook 'magit-refs-sections-hook 'magit-insert-tags)

Then you should also make sure that the listed remote branches actually all exist. You
can do so by pruning branches which no longer exist using f-pa.

Committing Performance

When you initiate a commit, then Magit by default automatically shows a diff of the changes
you are about to commit. For large commits this can take a long time, which is especially
distracting when you are committing large amounts of generated data which you don’t
actually intend to inspect before committing. This behavior can be turned off using:

(remove-hook 'server-switch-hook 'magit-commit-diff)

Chapter 9: Customizing 129

(remove-hook 'with-editor-filter-visit-hook 'magit-commit-diff)

Then you can type C-c C-d to show the diff when you actually want to see it, but only
then. Alternatively you can leave the hook alone and just type C-g in those cases when it
takes too long to generate the diff. If you do that, then you will end up with a broken diff
buffer, but doing it this way has the advantage that you usually get to see the diff, which
is useful because it increases the odds that you spot potential issues.

Microsoft Windows Performance

In order to update the status buffer, git has to be run a few dozen times. That is problem-
atic on Microsoft Windows, because that operating system is exceptionally slow at starting
processes. Sadly this is an issue that can only be fixed by Microsoft itself, and they don’t
appear to be particularly interested in doing so.

Beside the subprocess issue, there are also other Windows-specific performance issues.
Some of these have workarounds. The maintainers of "Git for Windows" try to improve
performance on Windows. Always use the latest release in order to benefit from the latest
performance tweaks. Magit too tries to work around some Windows-specific issues.

According to some sources, setting the following Git variables can also help.

git config --global core.preloadindex true # default since v2.1

git config --global core.fscache true # default since v2.8

git config --global gc.auto 256

You should also check whether an anti-virus program is affecting performance.

MacOS Performance

Before Emacs 26.1 child processes were created using fork on macOS. That needlessly
copied GUI resources, which is expensive. The result was that forking took about 30 times
as long on Darwin than on Linux, and because Magit starts many git processes that made
quite a difference.

So make sure that you are using at least Emacs 26.1, in which case the faster vfork

will be used. (The creation of child processes still takes about twice as long on Darwin
compared to Linux.) See1 for more information.

Additionally, git installed from a package manager like brew or nix seems to be slower
than the native executable. Profile the git executable you’re running against the one at
/usr/bin/git, and if you notice a notable difference try using the latter as magit-git-

executable.

9.2.3 Global Bindings

[User Option]magit-define-global-key-bindings
This option controls which set of Magit key bindings, if any, may be added to the
global keymap, even before Magit is first used in the current Emacs session.

• If the value is nil, no bindings are added.

• If default, maybe add:

C-x g magit-status

1 https://lists.gnu.org/archive/html/bug-gnu-emacs/2017-04/msg00201.html

https://lists.gnu.org/archive/html/bug-gnu-emacs/2017-04/msg00201.html

Chapter 9: Customizing 130

C-x M-g magit-dispatch

C-c M-g magit-file-dispatch

• If recommended, maybe add:

C-x g magit-status

C-c g magit-dispatch

C-c f magit-file-dispatch

These bindings are strongly recommended, but we cannot use them by default,
because the C-c <LETTER> namespace is strictly reserved for bindings added by
the user (see Section “Key Binding Conventions” in elisp).

The bindings in the chosen set may be added when after-init-hook is run. Each
binding is added if, and only if, at that time no other key is bound to the same
command, and no other command is bound to the same key. In other words we try
to avoid adding bindings that are unnecessary, as well as bindings that conflict with
other bindings.

Adding these bindings is delayed until after-init-hook is run to allow users to set
the variable anywhere in their init file (without having to make sure to do so before
magit is loaded or autoloaded) and to increase the likelihood that all the potentially
conflicting user bindings have already been added.

To set this variable use either setq or the Custom interface. Do not use the func-
tion customize-set-variable because doing that would cause Magit to be loaded
immediately, when that form is evaluated (this differs from custom-set-variables,
which doesn’t load the libraries that define the customized variables).

Setting this variable has no effect if after-init-hook has already been run.

131

10 Plumbing

The following sections describe how to use several of Magit’s core abstractions to extend
Magit itself or implement a separate extension.

A few of the low-level features used by Magit have been factored out into separate
libraries/packages, so that they can be used by other packages, without having to depend
on Magit. See with-editor for information about with-editor. transient doesn’t have
a manual yet.

If you are trying to find an unused key that you can bind to a command provided
by your own Magit extension, then checkout https://github.com/magit/magit/wiki/

Plugin-Dispatch-Key-Registry.

10.1 Calling Git

Magit provides many specialized functions for calling Git. All of these functions are defined
in either magit-git.el or magit-process.el and have one of the prefixes magit-run-,
magit-call-, magit-start-, or magit-git- (which is also used for other things).

All of these functions accept an indefinite number of arguments, which are strings that
specify command line arguments for Git (or in some cases an arbitrary executable). These
arguments are flattened before being passed on to the executable; so instead of strings they
can also be lists of strings and arguments that are nil are silently dropped. Some of these
functions also require a single mandatory argument before these command line arguments.

Roughly speaking, these functions run Git either to get some value or for side-effects.
The functions that return a value are useful to collect the information necessary to populate
a Magit buffer, while the others are used to implement Magit commands.

The functions in the value-only group always run synchronously, and they never trigger
a refresh. The function in the side-effect group can be further divided into subgroups
depending on whether they run Git synchronously or asynchronously, and depending on
whether they trigger a refresh when the executable has finished.

10.1.1 Getting a Value from Git

These functions run Git in order to get a value, an exit status, or output. Of course you
could also use them to run Git commands that have side-effects, but that should be avoided.

[Function]magit-git-exit-code &rest args
Executes git with ARGS and returns its exit code.

[Function]magit-git-success &rest args
Executes git with ARGS and returns t if the exit code is 0, nil otherwise.

[Function]magit-git-failure &rest args
Executes git with ARGS and returns t if the exit code is 1, nil otherwise.

[Function]magit-git-true &rest args
Executes git with ARGS and returns t if the first line printed by git is the string
"true", nil otherwise.

https://github.com/magit/magit/wiki/Plugin-Dispatch-Key-Registry
https://github.com/magit/magit/wiki/Plugin-Dispatch-Key-Registry

Chapter 10: Plumbing 132

[Function]magit-git-false &rest args
Executes git with ARGS and returns t if the first line printed by git is the string
"false", nil otherwise.

[Function]magit-git-insert &rest args
Executes git with ARGS and inserts its output at point.

[Function]magit-git-string &rest args
Executes git with ARGS and returns the first line of its output. If there is no output
or if it begins with a newline character, then this returns nil.

[Function]magit-git-lines &rest args
Executes git with ARGS and returns its output as a list of lines. Empty lines anywhere
in the output are omitted.

[Function]magit-git-items &rest args
Executes git with ARGS and returns its null-separated output as a list. Empty items
anywhere in the output are omitted.

If the value of option magit-git-debug is non-nil and git exits with a non-zero
exit status, then warn about that in the echo area and add a section containing git’s
standard error in the current repository’s process buffer.

[Function]magit-process-git destination &rest args
Calls Git synchronously in a separate process, returning its exit code. DESTINATION
specifies how to handle the output, like for call-process, except that file handlers
are supported. Enables Cygwin’s "noglob" option during the call and ensures unix
eol conversion.

[Function]magit-process-file process &optional infile buffer display &rest args
Processes files synchronously in a separate process. Identical to process-file but
temporarily enables Cygwin’s "noglob" option during the call and ensures unix eol
conversion.

If an error occurs when using one of the above functions, then that is usually due to a
bug, i.e., using an argument which is not actually supported. Such errors are usually not
reported, but when they occur we need to be able to debug them.

[User Option]magit-git-debug
Whether to report errors that occur when using magit-git-insert, magit-git-

string, magit-git-lines, or magit-git-items. This does not actually raise an
error. Instead a message is shown in the echo area, and git’s standard error is insert
into a new section in the current repository’s process buffer.

[Function]magit-git-str &rest args
This is a variant of magit-git-string that ignores the option magit-git-debug. It
is mainly intended to be used while handling errors in functions that do respect that
option. Using such a function while handing an error could cause yet another error
and therefore lead to an infinite recursion. You probably won’t ever need to use this
function.

Chapter 10: Plumbing 133

10.1.2 Calling Git for Effect

These functions are used to run git to produce some effect. Most Magit commands that
actually run git do so by using such a function.

Because we do not need to consume git’s output when using these functions, their output
is instead logged into a per-repository buffer, which can be shown using $ from a Magit
buffer or M-x magit-process elsewhere.

These functions can have an effect in two distinct ways. Firstly, running git may change
something, i.e., create or push a new commit. Secondly, that change may require that
Magit buffers are refreshed to reflect the changed state of the repository. But refreshing
isn’t always desirable, so only some of these functions do perform such a refresh after git
has returned.

Sometimes it is useful to run git asynchronously. For example, when the user has just
initiated a push, then there is no reason to make her wait until that has completed. In
other cases it makes sense to wait for git to complete before letting the user do something
else. For example after staging a change it is useful to wait until after the refresh because
that also automatically moves to the next change.

The synchronous functions return the exit code, while the asynchronous functions return
the process object.

[Function]magit-call-git &rest args
Calls git synchronously with ARGS.

[Function]magit-call-process program &rest args
Calls PROGRAM synchronously with ARGS.

[Function]magit-run-git &rest args
Calls git synchronously with ARGS and then refreshes.

[Function]magit-run-git-with-input &rest args
Calls git synchronously with ARGS and sends it the content of the current buffer on
standard input.

If the current buffer’s default-directory is on a remote filesystem, this function
actually runs git asynchronously. But then it waits for the process to return, so the
function itself is synchronous.

[Function]magit-git &rest args
Calls git synchronously with ARGS for side-effects only. This function does not refresh
the buffer.

[Function]magit-git-wash washer &rest args
Execute Git with ARGS, inserting washed output at point. Actually first insert the
raw output at point. If there is no output call magit-cancel-section. Otherwise
temporarily narrow the buffer to the inserted text, move to its beginning, and then
call function WASHER with ARGS as its sole argument.

And now for the asynchronous variants.

Chapter 10: Plumbing 134

[Function]magit-run-git-async &rest args
Start Git, prepare for refresh, and return the process object. ARGS is flattened and
then used as arguments to Git.

Display the command line arguments in the echo area.

After Git returns some buffers are refreshed: the buffer that was current when this
function was called (if it is a Magit buffer and still alive), as well as the respective
Magit status buffer. Unmodified buffers visiting files that are tracked in the current
repository are reverted if magit-revert-buffers is non-nil.

[Function]magit-run-git-with-editor &rest args
Export GITEDITOR and start Git. Also prepare for refresh and return the process
object. ARGS is flattened and then used as arguments to Git.

Display the command line arguments in the echo area.

After Git returns some buffers are refreshed: the buffer that was current when this
function was called (if it is a Magit buffer and still alive), as well as the respective
Magit status buffer.

[Function]magit-start-git input &rest args
Start Git, prepare for refresh, and return the process object.

If INPUT is non-nil, it has to be a buffer or the name of an existing buffer. The
buffer content becomes the processes standard input.

Option magit-git-executable specifies the Git executable and option magit-git-

global-arguments specifies constant arguments. The remaining arguments ARGS
specify arguments to Git. They are flattened before use.

After Git returns, some buffers are refreshed: the buffer that was current when this
function was called (if it is a Magit buffer and still alive), as well as the respective
Magit status buffer. Unmodified buffers visiting files that are tracked in the current
repository are reverted if magit-revert-buffers is non-nil.

[Function]magit-start-process &rest args
Start PROGRAM, prepare for refresh, and return the process object.

If optional argument INPUT is non-nil, it has to be a buffer or the name of an
existing buffer. The buffer content becomes the processes standard input.

The process is started using start-file-process and then setup to use the sen-
tinel magit-process-sentinel and the filter magit-process-filter. Information
required by these functions is stored in the process object. When this function returns
the process has not started to run yet so it is possible to override the sentinel and
filter.

After the process returns, magit-process-sentinel refreshes the buffer that was
current when magit-start-process was called (if it is a Magit buffer and still alive),
as well as the respective Magit status buffer. Unmodified buffers visiting files that are
tracked in the current repository are reverted if magit-revert-buffers is non-nil.

[Variable]magit-this-process
The child process which is about to start. This can be used to change the filter and
sentinel.

Chapter 10: Plumbing 135

[Variable]magit-process-raise-error
When this is non-nil, then magit-process-sentinel raises an error if git exits with
a non-zero exit status. For debugging purposes.

10.2 Section Plumbing

10.2.1 Creating Sections

[Macro]magit-insert-section &rest args
Insert a section at point.

TYPE is the section type, a symbol. Many commands that act on the current section
behave differently depending on that type. Also if a variable magit-TYPE-section-

map exists, then use that as the text-property keymap of all text belonging to the
section (but this may be overwritten in subsections). TYPE can also have the form
(eval FORM) in which case FORM is evaluated at runtime.

Optional VALUE is the value of the section, usually a string that is required when
acting on the section.

When optional HIDE is non-nil collapse the section body by default, i.e., when
first creating the section, but not when refreshing the buffer. Otherwise, expand it
by default. This can be overwritten using magit-section-set-visibility-hook.
When a section is recreated during a refresh, then the visibility of predecessor is
inherited and HIDE is ignored (but the hook is still honored).

BODY is any number of forms that actually insert the section’s heading and body.
Optional NAME, if specified, has to be a symbol, which is then bound to the struct
of the section being inserted.

Before BODY is evaluated the start of the section object is set to the value of point
and after BODY was evaluated its end is set to the new value of point; BODY is
responsible for moving point forward.

If it turns out inside BODY that the section is empty, then magit-cancel-section

can be used to abort and remove all traces of the partially inserted section. This
can happen when creating a section by washing Git’s output and Git didn’t actually
output anything this time around.

[Function]magit-insert-heading &rest args
Insert the heading for the section currently being inserted.

This function should only be used inside magit-insert-section.

When called without any arguments, then just set the content slot of the object
representing the section being inserted to a marker at point. The section should only
contain a single line when this function is used like this.

When called with arguments ARGS, which have to be strings, then insert those strings
at point. The section should not contain any text before this happens and afterwards
it should again only contain a single line. If the face property is set anywhere inside
any of these strings, then insert all of them unchanged. Otherwise use the magit-

section-heading face for all inserted text.

Chapter 10: Plumbing 136

The content property of the section struct is the end of the heading (which lasts from
start to content) and the beginning of the body (which lasts from content to end).
If the value of content is nil, then the section has no heading and its body cannot
be collapsed. If a section does have a heading then its height must be exactly one
line, including a trailing newline character. This isn’t enforced; you are responsible
for getting it right. The only exception is that this function does insert a newline
character if necessary.

[Function]magit-cancel-section
Cancel the section currently being inserted. This exits the innermost call to magit-

insert-section and removes all traces of what has already happened inside that
call.

[Function]magit-define-section-jumper sym title &optional value
Define an interactive function to go to section SYM. TITLE is the displayed title of
the section.

10.2.2 Section Selection

[Function]magit-current-section
Return the section at point.

[Function]magit-region-sections &optional condition multiple
Return a list of the selected sections.

When the region is active and constitutes a valid section selection, then return a list
of all selected sections. This is the case when the region begins in the heading of a
section and ends in the heading of the same section or in that of a sibling section. If
optional MULTIPLE is non-nil, then the region cannot begin and end in the same
section.

When the selection is not valid, then return nil. In this case, most commands that
can act on the selected sections will instead act on the section at point.

When the region looks like it would in any other buffer then the selection is invalid.
When the selection is valid then the region uses the magit-section-highlight face.
This does not apply to diffs where things get a bit more complicated, but even here
if the region looks like it usually does, then that’s not a valid selection as far as this
function is concerned.

If optional CONDITION is non-nil, then the selection not only has to be valid; all
selected sections additionally have to match CONDITION, or nil is returned. See
magit-section-match for the forms CONDITION can take.

[Function]magit-region-values &optional condition multiple
Return a list of the values of the selected sections.

Return the values that themselves would be returned by magit-region-sections

(which see).

Chapter 10: Plumbing 137

10.2.3 Matching Sections

M-x magit-describe-section-briefly

Show information about the section at point. This command is intended for
debugging purposes.

[Function]magit-section-ident section
Return an unique identifier for SECTION. The return value has the form ((TYPE .

VALUE)...).

[Function]magit-get-section ident &optional root
Return the section identified by IDENT. IDENT has to be a list as returned by
magit-section-ident.

[Function]magit-section-match condition &optional section
Return t if SECTION matches CONDITION. SECTION defaults to the section at
point. If SECTION is not specified and there also is no section at point, then return
nil.

CONDITION can take the following forms:

• (CONDITION...)

matches if any of the CONDITIONs matches.

• [CLASS...]

matches if the section’s class is the same as the first CLASS or a subclass of that;
the section’s parent class matches the second CLASS; and so on.

• [* CLASS...]

matches sections that match [CLASS...] and also recursively all their child sec-
tions.

• CLASS

matches if the section’s class is the same as CLASS or a subclass of that; regard-
less of the classes of the parent sections.

Each CLASS should be a class symbol, identifying a class that derives from magit-

section. For backward compatibility CLASS can also be a "type symbol". A section
matches such a symbol if the value of its type slot is eq. If a type symbol has an
entry in magit--section-type-alist, then a section also matches that type if its
class is a subclass of the class that corresponds to the type as per that alist.

Note that it is not necessary to specify the complete section lineage as printed by
magit-describe-section-briefly, unless of course you want to be that precise.

[Function]magit-section-value-if condition &optional section
If the section at point matches CONDITION, then return its value.

If optional SECTION is non-nil then test whether that matches instead. If there is
no section at point and SECTION is nil, then return nil. If the section does not
match, then return nil.

See magit-section-match for the forms CONDITION can take.

Chapter 10: Plumbing 138

[Function]magit-section-case &rest clauses
Choose among clauses on the type of the section at point.

Each clause looks like (CONDITION BODY. . .). The type of the section is com-
pared against each CONDITION; the BODY forms of the first match are evaluated
sequentially and the value of the last form is returned. Inside BODY the symbol it is
bound to the section at point. If no clause succeeds or if there is no section at point
return nil.

See magit-section-match for the forms CONDITION can take. Additionally a
CONDITION of t is allowed in the final clause and matches if no other CONDI-
TION match, even if there is no section at point.

[Variable]magit-root-section
The root section in the current buffer. All other sections are descendants of this
section. The value of this variable is set by magit-insert-section and you should
never modify it.

For diff related sections a few additional tools exist.

[Function]magit-diff-type &optional section
Return the diff type of SECTION.

The returned type is one of the symbols staged, unstaged, committed, or undefined.
This type serves a similar purpose as the general type common to all sections (which
is stored in the type slot of the corresponding magit-section struct) but takes
additional information into account. When the SECTION isn’t related to diffs and
the buffer containing it also isn’t a diff-only buffer, then return nil.

Currently the type can also be one of tracked and untracked, but these values are
not handled explicitly in every place they should be. A possible fix could be to just
return nil here.

The section has to be a diff or hunk section, or a section whose children are of type
diff. If optional SECTION is nil, return the diff type for the current section. In
buffers whose major mode is magit-diff-mode SECTION is ignored and the type is
determined using other means. In magit-revision-mode buffers the type is always
committed.

[Function]magit-diff-scope &optional section strict
Return the diff scope of SECTION or the selected section(s).

A diff’s "scope" describes what part of a diff is selected, it is a symbol, one of region,
hunk, hunks, file, files, or list. Do not confuse this with the diff "type", as
returned by magit-diff-type.

If optional SECTION is non-nil, then return the scope of that, ignoring the sections
selected by the region. Otherwise return the scope of the current section, or if the
region is active and selects a valid group of diff related sections, the type of these
sections, i.e., hunks or files. If SECTION (or if the current section that is nil) is
a hunk section and the region starts and ends inside the body of a that section, then
the type is region.

If optional STRICT is non-nil then return nil if the diff type of the section at point
is untracked or the section at point is not actually a diff but a diffstat section.

Chapter 10: Plumbing 139

10.3 Refreshing Buffers

All commands that create a new Magit buffer or change what is being displayed in an
existing buffer do so by calling magit-mode-setup. Among other things, that function sets
the buffer local values of default-directory (to the top-level of the repository), magit-
refresh-function, and magit-refresh-args.

Buffers are refreshed by calling the function that is the local value of magit-refresh-
function (a function named magit-*-refresh-buffer, where * may be something like
diff) with the value of magit-refresh-args as arguments.

[Macro]magit-mode-setup buffer switch-func mode refresh-func &optional
refresh-args

This function displays and selects BUFFER, turns on MODE, and refreshes a first
time.

This function displays and optionally selects BUFFER by calling magit-mode-

display-buffer with BUFFER, MODE and SWITCH-FUNC as arguments. Then
it sets the local value of magit-refresh-function to REFRESH-FUNC and that of
magit-refresh-args to REFRESH-ARGS. Finally it creates the buffer content by
calling REFRESH-FUNC with REFRESH-ARGS as arguments.

All arguments are evaluated before switching to BUFFER.

[Function]magit-mode-display-buffer buffer mode &optional switch-function
This function display BUFFER in some window and select it. BUFFER may be a
buffer or a string, the name of a buffer. The buffer is returned.

Unless BUFFER is already displayed in the selected frame, store the previous window
configuration as a buffer local value, so that it can later be restored by magit-mode-

bury-buffer.

The buffer is displayed and selected using SWITCH-FUNCTION. If that is nil then
pop-to-buffer is used if the current buffer’s major mode derives from magit-mode.
Otherwise switch-to-buffer is used.

[Variable]magit-refresh-function
The value of this buffer-local variable is the function used to refresh the current buffer.
It is called with magit-refresh-args as arguments.

[Variable]magit-refresh-args
The list of arguments used by magit-refresh-function to refresh the current buffer.
magit-refresh-function is called with these arguments.

The value is usually set using magit-mode-setup, but in some cases it’s also useful
to provide commands that can change the value. For example, the magit-diff-

refresh transient can be used to change any of the arguments used to display
the diff, without having to specify again which differences should be shown, but
magit-diff-more-context, magit-diff-less-context and magit-diff-default-

context change just the -U<N> argument. In both case this is done by changing the
value of this variable and then calling this magit-refresh-function.

Chapter 10: Plumbing 140

10.4 Conventions

Also see Section 4.5.2 [Completion and Confirmation], page 26.

10.4.1 Theming Faces

The default theme uses blue for local branches, green for remote branches, and goldenrod
(brownish yellow) for tags. When creating a new theme, you should probably follow that
example. If your theme already uses other colors, then stick to that.

In older releases these reference faces used to have a background color and a box around
them. The basic default faces no longer do so, to make Magit buffers much less noisy, and
you should follow that example at least with regards to boxes. (Boxes were used in the past
to work around a conflict between the highlighting overlay and text property backgrounds.
That’s no longer necessary because highlighting no longer causes other background colors to
disappear.) Alternatively you can keep the background color and/or box, but then have to
take special care to adjust magit-branch-current accordingly. By default it looks mostly
like magit-branch-local, but with a box (by default the former is the only face that uses
a box, exactly so that it sticks out). If the former also uses a box, then you have to make
sure that it differs in some other way from the latter.

The most difficult faces to theme are those related to diffs, headings, highlighting, and
the region. There are faces that fall into all four groups - expect to spend some time getting
this right.

The region face in the default theme, in both the light and dark variants, as well as in
many other themes, distributed with Emacs or by third-parties, is very ugly. It is common
to use a background color that really sticks out, which is ugly but if that were the only
problem then it would be acceptable. Unfortunately many themes also set the foreground
color, which ensures that all text within the region is readable. Without doing that there
might be cases where some foreground color is too close to the region background color to
still be readable. But it also means that text within the region loses all syntax highlighting.

I consider the work that went into getting the region face right to be a good indicator
for the general quality of a theme. My recommendation for the region face is this: use a
background color slightly different from the background color of the default face, and do
not set the foreground color at all. So for a light theme you might use a light (possibly tinted)
gray as the background color of default and a somewhat darker gray for the background
of region. That should usually be enough to not collide with the foreground color of any
other face. But if some other faces also set a light gray as background color, then you should
also make sure it doesn’t collide with those (in some cases it might be acceptable though).

Magit only uses the region face when the region is "invalid" by its own definition. In a
Magit buffer the region is used to either select multiple sibling sections, so that commands
which support it act on all of these sections instead of just the current section, or to select
lines within a single hunk section. In all other cases, the section is considered invalid and
Magit won’t act on it. But such invalid sections happen, either because the user has not
moved point enough yet to make it valid or because she wants to use a non-magit command
to act on the region, e.g., kill-region.

So using the regular region face for invalid sections is a feature. It tells the user that
Magit won’t be able to act on it. It’s acceptable if that face looks a bit odd and even (but

Chapter 10: Plumbing 141

less so) if it collides with the background colors of section headings and other things that
have a background color.

Magit highlights the current section. If a section has subsections, then all of them are
highlighted. This is done using faces that have "highlight" in their names. For most sections,
magit-section-highlight is used for both the body and the heading. Like the region

face, it should only set the background color to something similar to that of default. The
highlight background color must be different from both the region background color and
the default background color.

For diff related sections Magit uses various faces to highlight different parts of the selected
section(s). Note that hunk headings, unlike all other section headings, by default have
a background color, because it is useful to have very visible separators between hunks.
That face magit-diff-hunk-heading, should be different from both magit-diff-hunk-

heading-highlight and magit-section-highlight, as well as from magit-diff-context

and magit-diff-context-highlight. By default we do that by changing the foreground
color. Changing the background color would lead to complications, and there are already
enough we cannot get around. (Also note that it is generally a good idea for section headings
to always be bold, but only for sections that have subsections).

When there is a valid region selecting diff-related sibling sections, i.e., multiple files or
hunks, then the bodies of all these sections use the respective highlight faces, but addition-
ally the headings instead use one of the faces magit-diff-file-heading-selection or
magit-diff-hunk-heading-selection. These faces have to be different from the regular
highlight variants to provide explicit visual indication that the region is active.

When theming diff related faces, start by setting the option magit-diff-refine-hunk to
all. You might personally prefer to only refine the current hunk or not use hunk refinement
at all, but some of the users of your theme want all hunks to be refined, so you have to
cater to that.

(Also turn on magit-diff-highlight-indentation, magit-diff-highlight-

trailing, and magit-diff-paint-whitespace; and insert some whitespace errors into
the code you use for testing.)

For added lines you have to adjust three faces: magit-diff-added, magit-diff-added-
highlight, and diff-refined-added. Make sure that the latter works well with both of
the former, as well as smerge-other and diff-added. Then do the same for the removed
lines, context lines, lines added by us, and lines added by them. Also make sure the
respective added, removed, and context faces use approximately the same saturation for
both the highlighted and unhighlighted variants. Also make sure the file and diff headings
work nicely with context lines (e.g., make them look different). Line faces should set both
the foreground and the background color. For example, for added lines use two different
greens.

It’s best if the foreground color of both the highlighted and the unhighlighted variants
are the same, so you will need to have to find a color that works well on the highlight and
unhighlighted background, the refine background, and the highlight context background.
When there is an hunk internal region, then the added- and removed-lines background color
is used only within that region. Outside the region the highlighted context background color
is used. This makes it easier to see what is being staged. With an hunk internal region the
hunk heading is shown using magit-diff-hunk-heading-selection, and so are the thin

Chapter 10: Plumbing 142

lines that are added around the lines that fall within the region. The background color of
that has to be distinct enough from the various other involved background colors.

Nobody said this would be easy. If your theme restricts itself to a certain set of colors,
then you should make an exception here. Otherwise it would be impossible to make the
diffs look good in each and every variation. Actually you might want to just stick to the
default definitions for these faces. You have been warned. Also please note that if you do
not get this right, this will in some cases look to users like bugs in Magit - so please do it
right or not at all.

143

Appendix A FAQ

The next two nodes lists frequently asked questions. For a list of frequently and recently
asked questions, i.e., questions that haven’t made it into the manual yet, see https://

github.com/magit/magit/wiki/FAQ.

Please also see Chapter 11 [Debugging Tools], page 148.

A.1 FAQ - How to . . . ?

A.1.1 How to pronounce Magit?

Either mu[m's] git or magi{c => t} is fine.

The slogan is "It’s Magit! The magical Git client", so it makes sense to pronounce Magit
like magic, while taking into account that C and T do not sound the same.

The German "Magie" is not pronounced the same as the English "magic", so if you speak
German, then you can use the above rationale to justify using the former pronunciation;
Mag{ie => it}.

You can also choose to use the former pronunciation just because you like it better.

Also see https://magit.vc/assets/videos/magic.mp4. Also see https://emacs.

stackexchange.com/questions/13696.

A.1.2 How to show git’s output?

To show the output of recently run git commands, press $ (or, if that isn’t available, use
M-x magit-process-buffer). This shows a buffer containing a section per git invocation;
as always press TAB to expand or collapse them.

By default, git’s output is only inserted into the process buffer if it is run for side-
effects. When the output is consumed in some way, also inserting it into the process buffer
would be too expensive. For debugging purposes, it’s possible to do so anyway, using M-x

magit-toggle-git-debug.

A.1.3 How to install the gitman info manual?

Git’s manpages can be exported as an info manual called gitman. Magit’s own info manual
links to nodes in that manual instead of the actual manpages, simply because Info doesn’t
support linking to manpages.

Unfortunately some distributions do not install the gitman manual by default and you
would have to install a separate documentation package to get it.

Magit patches info, adding the ability to visit links to the gitman info manual, by instead
viewing the respective manpage. If you prefer that approach, then set the value of magit-
view-git-manual-method to one of the supported Emacs packages man or woman, e.g.:

(setq magit-view-git-manual-method 'man)

A.1.4 How to show diffs for gpg-encrypted files?

Git supports showing diffs for encrypted files, but has to be told to do so. Since Magit just
uses Git to get the diffs, configuring Git also affects the diffs displayed inside Magit.

git config --global diff.gpg.textconv "gpg --no-tty --decrypt"

echo "*.gpg filter=gpg diff=gpg" > .gitattributes

https://github.com/magit/magit/wiki/FAQ
https://github.com/magit/magit/wiki/FAQ
https://magit.vc/assets/videos/magic.mp4
https://emacs.stackexchange.com/questions/13696
https://emacs.stackexchange.com/questions/13696

Appendix A: FAQ 144

A.1.5 How does branching and pushing work?

Please see Section 6.6 [Branching], page 81, and https://emacsair.me/2016/01/18/

magit-2.4

A.1.6 Should I disable VC?

If you don’t use VC (the built-in version control interface) then you might be tempted to
disable it, not least because we used to recommend that you do that.

We no longer recommend that you disable VC. Doing so would break useful third-party
packages (such as diff-hl), which depend on VC being enabled.

If you choose to disable VC anyway, then you can do so by changing the value of vc-
handled-backends.

A.2 FAQ - Issues and Errors

A.2.1 Magit is slow

See Section 9.2.2 [Performance], page 127, and Section A.2.2 [I changed several thousand
files at once and now Magit is unusable], page 144.

A.2.2 I changed several thousand files at once and now Magit is
unusable

Magit is currently not expected to work well under such conditions. It sure would be nice
if it did. Reaching satisfactory performance under such conditions will require some heavy
refactoring. This is no small task but I hope to eventually find the time to make it happen.

But for now we recommend you use the command line to complete this one commit.
Also see Section 9.2.2 [Performance], page 127.

A.2.3 I am having problems committing

That likely means that Magit is having problems finding an appropriate emacsclient exe-
cutable. See Section “Configuring With-Editor” in with-editor and Section “Debugging”
in with-editor.

A.2.4 I am using MS Windows and cannot push with Magit

It’s almost certain that Magit is only incidental to this issue. It is much more likely that
this is a configuration issue, even if you can push on the command line.

Detailed setup instructions can be found at https://github.com/magit/magit/wiki/
Pushing-with-Magit-from-Windows.

A.2.5 I am using macOS and SOMETHING works in shell, but
not in Magit

This usually occurs because Emacs doesn’t have the same environment variables
as your shell. Try installing and configuring https://github.com/purcell/

exec-path-from-shell. By default it synchronizes $PATH, which helps Magit find the
same git as the one you are using on the shell.

If SOMETHING is "passphrase caching with gpg-agent for commit and/or tag signing",
then you’ll also need to synchronize $GPG_AGENT_INFO.

https://emacsair.me/2016/01/18/magit-2.4
https://emacsair.me/2016/01/18/magit-2.4
https://github.com/magit/magit/wiki/Pushing-with-Magit-from-Windows
https://github.com/magit/magit/wiki/Pushing-with-Magit-from-Windows
https://github.com/purcell/exec-path-from-shell
https://github.com/purcell/exec-path-from-shell

Appendix A: FAQ 145

A.2.6 Expanding a file to show the diff causes it to disappear

This is probably caused by a customization of a diff.* Git variable. You probably set that
variable for a reason, and should therefore only undo that setting in Magit by customizing
magit-git-global-arguments.

A.2.7 Point is wrong in the COMMIT_EDITMSG buffer

Neither Magit nor git-commit.el fiddle with point in the buffer used to write commit
messages, so something else must be doing it.

You have probably globally enabled a mode, which restores point in file-visiting buffers.
It might be a bit surprising, but when you write a commit message, then you are actually
editing a file.

So you have to figure out which package is doing it. saveplace, pointback, and session

are likely candidates. These snippets might help:

(setq session-name-disable-regexp "\\(?:\\`'\\.git/[A-Z_]+\\'\\)")

(with-eval-after-load 'pointback

(lambda ()

(when (or git-commit-mode git-rebase-mode)

(pointback-mode -1))))

A.2.8 The mode-line information isn’t always up-to-date

Magit is not responsible for the version control information that is being displayed in the
mode-line and looks something like Git-master. The built-in "Version Control" package,
also known as "VC", updates that information, and can be told to do so more often:

(setq auto-revert-check-vc-info t)

But doing so isn’t good for performance. For more (overly optimistic) information see
Section “VC Mode Line” in emacs.

If you don’t really care about seeing this information in the mode-line, but just don’t
want to see incorrect information, then consider simply not displaying it in the mode-line:

(setq-default mode-line-format

(delete '(vc-mode vc-mode) mode-line-format))

A.2.9 A branch and tag sharing the same name breaks
SOMETHING

Or more generally, ambiguous refnames break SOMETHING.

Magit assumes that refs are named non-ambiguously across the "refs/heads/",
"refs/tags/", and "refs/remotes/" namespaces (i.e., all the names remain unique
when those prefixes are stripped). We consider ambiguous refnames unsupported and
recommend that you use a non-ambiguous naming scheme. However, if you do work with
a repository that has ambiguous refnames, please report any issues you encounter, so that
we can investigate whether there is a simple fix.

Appendix A: FAQ 146

A.2.10 My Git hooks work on the command-line but not inside
Magit

When Magit calls git it adds a few global arguments including --literal-pathspecs and
the git process started by Magit then passes that setting on to other git process it starts
itself. It does so by setting the environment variable GIT_LITERAL_PATHSPECS, not by
calling subprocesses with the --literal-pathspecs argument. You can therefore override
this setting in hook scripts using unset GIT_LITERAL_PATHSPECS.

A.2.11 git-commit-mode isn’t used when committing from the
command-line

The reason for this is that git-commit.el has not been loaded yet and/or that the server
has not been started yet. These things have always already been taken care of when you
commit from Magit because in order to do so, Magit has to be loaded and doing that
involves loading git-commit and starting the server.

If you want to commit from the command-line, then you have to take care of these things
yourself. Your init.el file should contain:

(require 'git-commit)

(server-mode)

Instead of ‘(require ’git-commit)‘ you may also use:

(load "/path/to/magit-autoloads.el")

You might want to do that because loading git-commit causes large parts of Magit to
be loaded.

There are also some variations of (server-mode) that you might want to try. Personally
I use:

(use-package server

:config (or (server-running-p) (server-mode)))

Now you can use:

$ emacs&

$ EDITOR=emacsclient git commit

However you cannot use:

$ killall emacs

$ EDITOR="emacsclient --alternate-editor emacs" git commit

This will actually end up using emacs, not emacsclient. If you do this, then you can
still edit the commit message but git-commit-mode won’t be used and you have to exit
emacs to finish the process.

Tautology ahead. If you want to be able to use emacsclient to connect to a running
emacs instance, even though no emacs instance is running, then you cannot use emacsclient
directly.

Instead you have to create a script that does something like this:

Try to use emacsclient (without using --alternate-editor). If that succeeds, do
nothing else. Otherwise start emacs & (and init.el must call server-start) and try to
use emacsclient again.

Appendix A: FAQ 147

A.2.12 Point ends up inside invisible text when jumping to a file-
visiting buffer

This can happen when you type RET on a hunk to visit the respective file at the respective
position. One solution to this problem is to use global-reveal-mode. It makes sure that
text around point is always visible. If that is too drastic for your taste, then you may instead
use magit-diff-visit-file-hook to reveal the text, possibly using reveal-post-command
or for Org buffers org-reveal.

A.2.13 I am no longer able to save popup defaults

Magit used to use Magit-Popup to implement the transient popup menus. Now it used
Transient instead, which is Magit-Popup’s successor.

In the older Magit-Popup menus, it was possible to save user settings (e.g., setting the
gpg signing key for commits) by using C-c C-c in the popup buffer. This would dismiss the
popup, but save the settings as the defaults for future popups.

When switching to Transient menus, this functionality is now available via C-x C-s

instead; the C-x prefix has other options as well when using Transient, which will be dis-
played when it is typed. See https://docs.magit.vc/transient/Saving-Values.html#

Saving-Values for more details.

https://docs.magit.vc/transient/Saving-Values.html#Saving-Values
https://docs.magit.vc/transient/Saving-Values.html#Saving-Values

148

11 Debugging Tools

Magit and its dependencies provide a few debugging tools, and we appreciate it very much
if you use those tools before reporting an issue. Please include all relevant output when
reporting an issue.

M-x magit-version

This command shows the currently used versions of Magit, Git, and Emacs in
the echo area. Non-interactively this just returns the Magit version.

M-x magit-emacs-Q-command

This command shows a debugging shell command in the echo area and adds it
to the kill ring. Paste that command into a shell and run it.

This shell command starts emacs with only magit and its dependencies loaded.
Neither your configuration nor other installed packages are loaded. This makes
it easier to determine whether some issue lays with Magit or something else.

If you run Magit from its Git repository, then you should be able to use make

emacs-Q instead of the output of this command.

M-x magit-toggle-git-debug

This command toggles whether additional git errors are reported.

Magit basically calls git for one of these two reasons: for side-effects or to do
something with its standard output.

When git is run for side-effects then its output, including error messages, go
into the process buffer which is shown when using $.

When git’s output is consumed in some way, then it would be too expensive
to also insert it into this buffer, but with this command that can be enabled
temporarily. In that case, if git returns with a non-zero exit status, then at
least its standard error is inserted into this buffer.

Also note that just because git exits with a non-zero status and prints an
error message, that usually doesn’t mean that it is an error as far as Magit
is concerned, which is another reason we usually hide these error messages.
Whether some error message is relevant in the context of some unexpected
behavior has to be judged on a case by case basis.

M-x magit-toggle-verbose-refresh

This command toggles whether Magit refreshes buffers verbosely. Enabling this
helps figuring out which sections are bottlenecks. The additional output can
be found in the *Messages* buffer.

M-x magit-toggle-subprocess-record

This command toggles whether subprocess invocations are recorded.

When enabled, all subprocesses started by magit-process-file are logged into
the buffer specified by magit-process-record-buffer-name using the format
magit-process-record-entry-format. This is for debugging purposes.

This is in addition to and distinct from the default logging done by default, and
additional logging enabled with magit-toggle-git-debug.

Chapter 11: Debugging Tools 149

M-x magit-debug-git-executable

This command displays a buffer containing information about the available and
used git executable(s), and can be useful when investigating exec-path issues.

Also see Section 4.7.4 [Git Executable], page 31.

M-x magit-profile-refresh-buffer

This command profiles refreshing the current Magit buffer and then displays
the results.

M-x magit-toggle-profiling

This command starts profiling Magit and Forge, or if profiling is already in
progress, it instead stops that and displays the results.

M-x with-editor-debug

This command displays a buffer containing information about the available
and used emacsclient executable(s), and can be useful when investigating
why Magit (or rather with-editor) cannot find an appropriate emacsclient

executable.

Also see Section “Debugging” in with-editor.

Please also see Appendix A [FAQ], page 143.

150

Appendix B Keystroke Index

!
! . 30
! ! . 31
! a . 31
! b . 31
! g . 31
! k . 31
! m . 31
! p . 31
! s . 31
! S . 31

$
$. 29

+
+ . 44, 50

–
- . 44, 50

:
: . 31

=
= . 44

>
> . 116
> a . 116
> d . 116
> e . 116
> r . 116
> s . 116

^
^ . 15

0
0 . 50

1
1 . 17

2
2 . 17

3
3 . 17

4
4 . 17

5
5 . 41

A
a . 72
A . 98
A a . 99, 100
A A . 98, 100
A d . 99
A h . 99
A n . 99
A s . 99, 100

B
b . 66, 82, 95
b b . 82
b c . 83
b C . 82
b k . 84
b l . 83
b m . 84
b n . 83
b s . 83
b S . 84
b x . 84
B . 61
B b . 61
B B . 61
B g . 61
B k . 62
B m . 61
B r . 62
B s . 61

Appendix B: Keystroke Index 151

C
c . 66, 73, 95
c a . 73
c A . 75
c c . 73
c e . 73
c f . 74
c F . 75
c n . 75
c s . 74
c S . 76
c w . 73
c W . 75
C . 68
C > . 68
C b . 68
C C . 68
C d . 69
C e . 69
C m . 69
C s . 68
C-<return> . 63
C-<tab> . 17
C-c C-a . 79
C-c C-b . 43, 51
C-c C-c . 46, 77, 93
C-c C-d . 50, 78
C-c C-e . 51
C-c C-f . 43, 51
C-c C-i . 79
C-c C-k . 46, 77, 93
C-c C-n . 43
C-c C-o . 79
C-c C-p . 79
C-c C-r . 79
C-c C-s . 79
C-c C-t . 51, 79
C-c C-w . 78
C-c f . 121
C-c f , c . 121
C-c f , k . 121
C-c f , r . 121
C-c f , x . 121
C-c f b . 64, 121
C-c f B . 64, 121
C-c f B b . 64
C-c f B e . 64
C-c f B f . 64
C-c f B q . 64
C-c f B r . 64
C-c f c . 121
C-c f d . 121
C-c f D . 121
C-c f e . 64, 121
C-c f f . 64, 121
C-c f g . 121
C-c f G . 121
C-c f l . 121

C-c f L . 121
C-c f m . 121
C-c f M . 121
C-c f n . 121
C-c f p . 121
C-c f q . 64, 121
C-c f r . 64, 121
C-c f s . 121
C-c f t . 121
C-c f u . 121
C-c f v . 121
C-c f V . 121
C-c g . 21
C-c M-g . 121
C-c M-g , c . 122
C-c M-g , k . 122
C-c M-g , r . 122
C-c M-g , x . 121
C-c M-g b . 65
C-c M-g B . 64, 123
C-c M-g B b . 65
C-c M-g B e . 65
C-c M-g B f . 65
C-c M-g B q . 65
C-c M-g B r . 65
C-c M-g c . 123
C-c M-g d . 122
C-c M-g D . 122
C-c M-g e . 65, 123
C-c M-g f . 65
C-c M-g g . 123
C-c M-g G . 123
C-c M-g l . 122
C-c M-g L . 122
C-c M-g M . 122
C-c M-g n . 123
C-c M-g p . 123
C-c M-g q . 65
C-c M-g r . 65
C-c M-g s . 121
C-c M-g t . 122
C-c M-g u . 121
C-c M-g v . 123
C-c M-g V . 123
C-c M-i . 79
C-c M-s . 77
C-c TAB . 17
C-w . 117
C-x g . 33
C-x M-g . 21
C-x u . 95

Appendix B: Keystroke Index 152

D
d . 48
d c . 49
d d . 48
d p . 49
d r . 49
d s . 49
d t . 49
d u . 49
d w . 49
D . 49
D f . 50
D F . 50
D g . 50
D r . 50
D s . 50
D t . 50
D w . 50
DEL . 44, 51, 66, 94

E
e . 55, 94
E . 55
E c . 56
E i . 56
E m . 55
E M . 55
E r . 55
E s . 56
E t . 56
E u . 56
E w . 56
E z . 56

F
f . 41, 94, 106
f a . 106
f C . 82
f e . 106
f m . 106
f o . 106
f p . 106
f r . 106
f u . 106
F . 94, 107
F C . 82
F e . 107
F p . 107
F u . 107

G
g . 12
G . 12

H
H . 20

I
I . 68

J
j . 43, 51

K
k . 30, 72, 95, 103

L
l . 42, 95
l a . 42
l b . 42
l h . 42
l H . 47
l l . 42
l L . 42
l o . 42
l O . 47
l r . 47
l u . 42
L . 43, 46
L d . 46
L g . 43
L l . 46
L L . 43, 46
L s . 43
L w . 43

M
m . 41, 88
m a . 89, 90
m d . 89
m e . 89
m m . 89, 90
m n . 89
m p . 90
m s . 89
M . 104
M a . 104
M C . 104
M k . 105
M p . 105
M P . 105
M r . 104
M u . 104
M-<tab> . 17
M-1 . 18
M-2 . 18
M-3 . 18

Appendix B: Keystroke Index 153

M-4 . 18
M-n . 15, 77, 94
M-p . 15, 77, 94
M-w . 66, 117
MM . 95
Mt . 96

N
n . 15, 66, 94, 124
N . 66

O
o . 113
o a . 113
o d . 114
o f . 114
o l . 114
o p . 114
o r . 113
o s . 114
o u . 114
O . 114
O e . 115
O e p . 115
O e s . 115
O i . 114
O i a . 114
O i c . 114
O i f . 115
O i m . 114

P
p . 15, 66, 94, 124
P . 66, 107
P C . 82
P e . 107
P m . 108
P o . 108
P p . 107
P r . 108
P t . 108
P T . 108
P u . 107

Q
q . 11, 43, 66, 124

R
r . 92, 94
r a . 93
r e . 92, 93
r f . 93
r i . 93
r k . 93
r m . 93
r p . 92
r r . 93
r s . 92, 93
r u . 92
r w . 93
RET . 41, 59, 62, 65, 94

S
s . 70, 94
S . 71, 94
S-<tab> . 17
SPC . 44, 51, 65, 94

T
t . 95, 111
t k . 111
t p . 111
t r . 111
t t . 111
T . 111
T a . 112
T c . 112
T m . 112
T p . 112
T r . 112
T T . 111
TAB . 17

U
u . 41, 71
U . 71

V
v . 72
V . 100
V a . 100
V s . 100
V v . 100
V V . 100

Appendix B: Keystroke Index 154

W
w . 109
w a . 109, 110
w m . 109
w s . 110
w w . 109, 110
W . 109
W c . 109
W s . 109

X
x . 95, 100
X f . 101
X h . 101
X i . 101
X k . 101
X m . 100
X s . 101
X w . 101, 118

Y
y . 57, 95
y c . 57
y o . 57
y r . 57
y y . 57
Y . 47

Z

z . 101

z a . 102

z b . 103

z B . 103

z f . 103

z i . 101

z I . 102

z k . 102

z l . 103

z p . 102

z v . 103

z w . 101

z W . 102

z x . 101

z z . 101

z Z . 102

Z . 115

Z b . 115

Z c . 115

Z g . 115

Z k . 115

Z m . 115

155

Appendix C Function and Command Index

B
bug-reference-mode . 80

F
forward-line . 94

G
git-commit-ack . 79
git-commit-cc . 79
git-commit-check-style-conventions 81
git-commit-insert-pseudo-header 79
git-commit-next-message . 77
git-commit-prev-message . 77
git-commit-propertize-diff 80
git-commit-reported . 79
git-commit-review . 79
git-commit-save-message 77, 80
git-commit-setup-changelog-support 80
git-commit-signoff . 79
git-commit-suggested . 79
git-commit-test . 79
git-commit-turn-on-auto-fill 80
git-commit-turn-on-flyspell 80
git-rebase-alter . 94
git-rebase-backward-line . 94
git-rebase-break . 95
git-rebase-edit . 94
git-rebase-exec . 95
git-rebase-fixup . 94
git-rebase-insert . 95
git-rebase-kill-line . 95
git-rebase-label . 95
git-rebase-merge . 95
git-rebase-merge-toggle-editmsg 96
git-rebase-move-line-down 94
git-rebase-move-line-up . 94
git-rebase-pick . 95
git-rebase-reset . 95
git-rebase-reword . 94
git-rebase-show-commit . 94
git-rebase-show-or-scroll-down 94
git-rebase-show-or-scroll-up 94
git-rebase-squash . 94
git-rebase-squish . 94
git-rebase-undo . 95

M
magit-add-section-hook . 20
magit-after-save-refresh-status 12
magit-am . 109
magit-am-abort . 110
magit-am-apply-maildir . 109
magit-am-apply-patches . 109
magit-am-continue . 110
magit-am-skip . 110
magit-apply . 72
magit-bisect . 61
magit-bisect-bad . 61
magit-bisect-good . 61
magit-bisect-mark . 61
magit-bisect-reset . 62
magit-bisect-run . 61
magit-bisect-skip . 62
magit-bisect-start . 61
magit-blame . 64, 66, 121, 123
magit-blame-addition . 64, 65
magit-blame-additions . 121
magit-blame-copy-hash . 66
magit-blame-cycle-style . 66
magit-blame-echo . 64, 65, 121
magit-blame-next-chunk . 66
magit-blame-next-chunk-same-commit 66
magit-blame-previous-chunk 66
magit-blame-previous-chunk-same-commit 66
magit-blame-quit 64, 65, 66, 121
magit-blame-removal 64, 65, 121
magit-blame-reverse 64, 65, 121
magit-blob-next . 121, 123, 124
magit-blob-previous 121, 123, 124
magit-blob-visit-file 121, 123
magit-branch . 82
magit-branch-and-checkout 83
magit-branch-checkout . 83
magit-branch-configure . 82
magit-branch-create . 83
magit-branch-delete . 84
magit-branch-or-checkout . 86
magit-branch-orphan . 86
magit-branch-rename . 84
magit-branch-reset . 84
magit-branch-shelve . 88
magit-branch-spinoff . 83
magit-branch-spinout . 84
magit-branch-unshelve . 88
magit-builtin-completing-read 28
magit-bundle . 117
magit-bury-or-kill-buffer 124
magit-call-git . 133
magit-call-process . 133
magit-cancel-section . 136

Appendix C: Function and Command Index 156

magit-checkout . 82
magit-cherry . 47
magit-cherry-apply . 99
magit-cherry-copy . 98
magit-cherry-donate . 99
magit-cherry-harvest . 99
magit-cherry-pick . 98
magit-cherry-spinoff . 99
magit-cherry-spinout . 99
magit-clone . 68
magit-clone-bare . 68
magit-clone-mirror . 69
magit-clone-regular . 68
magit-clone-shallow . 68
magit-clone-shallow-exclude 69
magit-clone-shallow-since 69
magit-clone-sparse . 68
magit-commit . 73, 121, 123
magit-commit-alter . 75
magit-commit-amend . 73
magit-commit-augment . 75
magit-commit-create . 73
magit-commit-extend . 73
magit-commit-fixup . 74
magit-commit-instant-fixup 75
magit-commit-instant-squash 76
magit-commit-revise . 75
magit-commit-reword . 73
magit-commit-squash . 74
magit-completing-read . 28
magit-copy-buffer-revision 117
magit-copy-section-value 117
magit-current-section . 136
magit-cycle-margin-style . 46
magit-debug-git-executable 32, 149
magit-define-section-jumper 136
magit-describe-section . 20
magit-describe-section-briefly 20, 137
magit-diff . 48, 121, 122
magit-diff-buffer-file 121, 122
magit-diff-default-context 50
magit-diff-dwim . 48
magit-diff-edit-hunk-commit 51
magit-diff-flip-revs . 50
magit-diff-less-context . 50
magit-diff-more-context . 50
magit-diff-paths . 49
magit-diff-range . 49
magit-diff-refresh . 49, 50
magit-diff-save-default-arguments 50
magit-diff-scope . 138
magit-diff-set-default-arguments 50
magit-diff-show-or-scroll-down 44, 66
magit-diff-show-or-scroll-up 44, 65
magit-diff-staged . 49
magit-diff-switch-range-type 50
magit-diff-toggle-file-filter 50
magit-diff-toggle-refine-hunk 50

magit-diff-trace-definition 51
magit-diff-type . 138
magit-diff-unstaged . 49
magit-diff-visit-file . 62
magit-diff-visit-file-other-frame 63
magit-diff-visit-file-other-window 63
magit-diff-visit-worktree-file 63
magit-diff-visit-worktree-file-other-

frame . 63
magit-diff-visit-worktree-file-other-

window . 63
magit-diff-while-committing 50, 78
magit-diff-working-tree . 49
magit-disable-section-inserter 125
magit-discard . 72
magit-dispatch . 21
magit-display-buffer . 8
magit-display-buffer-fullcolumn-most-v1 9
magit-display-buffer-fullframe-status-

topleft-v1 . 9
magit-display-buffer-fullframe-status-v1 . . . 9
magit-display-buffer-same-window-except-

diff-v1 . 9
magit-display-buffer-traditional 9
magit-display-repository-buffer . 117, 121, 123
magit-ediff . 55
magit-ediff-compare . 55
magit-ediff-dwim . 55
magit-ediff-resolve-all . 55
magit-ediff-resolve-rest . 55
magit-ediff-show-commit . 56
magit-ediff-show-staged . 56
magit-ediff-show-stash . 56
magit-ediff-show-unstaged 56
magit-ediff-show-working-tree 56
magit-ediff-stage . 56
magit-edit-line-commit 121, 123
magit-emacs-Q-command . 148
magit-fetch . 106
magit-fetch-all . 106
magit-fetch-branch . 106
magit-fetch-from-pushremote 106
magit-fetch-from-upstream 106
magit-fetch-modules . 106, 114
magit-fetch-other . 106
magit-fetch-refspec . 106
magit-file-checkout 101, 121, 122
magit-file-delete . 121, 122
magit-file-dispatch . 121
magit-file-rename . 121, 122
magit-file-untrack . 121
magit-find-file . 62, 121, 123
magit-find-file-other-frame 62
magit-find-file-other-window 62
magit-generate-buffer-name-default-

function . 10
magit-get-section . 137
magit-git . 133

Appendix C: Function and Command Index 157

magit-git-command . 31
magit-git-command-topdir . 31
magit-git-exit-code . 131
magit-git-failure . 131
magit-git-false . 132
magit-git-insert . 132
magit-git-items . 132
magit-git-lines . 132
magit-git-mergetool . 31, 56
magit-git-str . 132
magit-git-string . 132
magit-git-success . 131
magit-git-true . 131
magit-git-wash . 133
magit-go-backward . 43, 51
magit-go-forward . 43, 51
magit-hunk-set-window-start 16
magit-init . 68
magit-insert-am-sequence . 35
magit-insert-assume-unchanged-files 37
magit-insert-bisect-log . 35
magit-insert-bisect-output 35
magit-insert-bisect-rest . 35
magit-insert-diff-filter-header 38
magit-insert-error-header 38
magit-insert-head-branch-header 38
magit-insert-heading . 135
magit-insert-ignored-files 37
magit-insert-local-branches 61
magit-insert-merge-log . 35
magit-insert-modules . 38
magit-insert-modules-overview 39
magit-insert-modules-unpulled-from-

pushremote . 39
magit-insert-modules-unpulled-from-

upstream . 39
magit-insert-modules-unpushed-to-

pushremote . 39
magit-insert-modules-unpushed-to-upstream .39
magit-insert-push-branch-header 38
magit-insert-rebase-sequence 35
magit-insert-recent-commits 37
magit-insert-remote-branches 61
magit-insert-remote-header 38
magit-insert-repo-header . 38
magit-insert-section . 135
magit-insert-sequencer-sequence 35
magit-insert-skip-worktree-files 37
magit-insert-staged-changes 35
magit-insert-stashes . 35
magit-insert-status-headers 34, 37
magit-insert-tags . 61
magit-insert-tags-header . 38
magit-insert-tracked-files 36
magit-insert-unpulled-cherries 37
magit-insert-unpulled-from-pushremote 35
magit-insert-unpulled-from-upstream 35
magit-insert-unpulled-or-recent-commits . . . 37

magit-insert-unpushed-cherries 37
magit-insert-unpushed-to-pushremote 36
magit-insert-unpushed-to-upstream 36
magit-insert-unpushed-to-upstream-or-

recent . 35
magit-insert-unstaged-changes 35
magit-insert-untracked-files 36
magit-insert-upstream-branch-header 38
magit-insert-user-header . 38
magit-jump-to-diffstat-or-diff 51
magit-list-repositories . 40
magit-list-submodules 113, 114
magit-log . 42, 121, 122
magit-log-all . 42
magit-log-all-branches . 42
magit-log-branches . 42
magit-log-buffer-file 121, 122
magit-log-bury-buffer . 43
magit-log-current . 42
magit-log-double-commit-limit 44
magit-log-half-commit-limit 44
magit-log-head . 42
magit-log-maybe-show-more-commits 16
magit-log-maybe-update-blob-buffer 16
magit-log-maybe-update-revision-buffer 16
magit-log-merged . 121, 122
magit-log-move-to-parent . 43
magit-log-move-to-revision 43
magit-log-other . 42
magit-log-refresh . 43
magit-log-related . 42
magit-log-save-default-arguments 43
magit-log-select-pick . 46
magit-log-select-quit . 46
magit-log-set-default-arguments 43
magit-log-toggle-commit-limit 44
magit-log-trace-definition 121, 122
magit-margin-settings . 46
magit-maybe-set-dedicated 10
magit-merge . 88, 90
magit-merge-abort . 90
magit-merge-absorb . 89
magit-merge-dissolve . 89
magit-merge-editmsg . 89
magit-merge-nocommit . 89
magit-merge-plain . 89
magit-merge-preview . 90
magit-merge-squash . 89
magit-mode-bury-buffer . 11
magit-mode-display-buffer 139
magit-mode-quit-window . 11
magit-mode-setup . 139
magit-notes . 111
magit-notes-edit . 111
magit-notes-merge . 112
magit-notes-merge-abort . 112
magit-notes-merge-commit 112
magit-notes-prune . 112

Appendix C: Function and Command Index 158

magit-notes-remove . 112
magit-patch . 109
magit-patch-apply . 109
magit-patch-create . 109
magit-patch-save . 109
magit-pop-revision-stack . 78
magit-process-buffer . 29
magit-process-file . 132
magit-process-git . 132
magit-process-kill . 30
magit-profile-refresh-buffer 149
magit-pull . 107
magit-pull-branch . 107
magit-pull-from-pushremote 107
magit-pull-from-upstream 107
magit-push . 107
magit-push-current . 107
magit-push-current-to-pushremote 107
magit-push-current-to-upstream 107
magit-push-implicitly . 108
magit-push-matching . 108
magit-push-other . 108
magit-push-refspecs . 108
magit-push-tag . 108
magit-push-tags . 108
magit-push-to-remote . 108
magit-rebase . 92
magit-rebase-abort . 93
magit-rebase-autosquash . 93
magit-rebase-branch . 92
magit-rebase-continue . 93
magit-rebase-edit . 93
magit-rebase-edit-commit . 93
magit-rebase-interactive . 93
magit-rebase-onto-pushremote 92
magit-rebase-onto-upstream 92
magit-rebase-remove-commit 93
magit-rebase-reword-commit 93
magit-rebase-skip . 93
magit-rebase-subset . 92
magit-reflog-current . 47
magit-reflog-head . 47
magit-reflog-other . 47
magit-refresh . 12
magit-refresh-all . 12
magit-refs-set-show-commit-count 57
magit-region-sections . 136
magit-region-values . 136
magit-remote . 104
magit-remote-add . 104
magit-remote-configure . 104
magit-remote-prune . 105
magit-remote-prune-refspecs 105
magit-remote-remove . 105
magit-remote-rename . 104
magit-remote-set-url . 104
magit-repolist-column-branch 40
magit-repolist-column-branches 40

magit-repolist-column-flag 41
magit-repolist-column-flags 41
magit-repolist-column-ident 40
magit-repolist-column-path 40
magit-repolist-column-stashes 40
magit-repolist-column-unpulled-from-

pushremote . 41
magit-repolist-column-unpulled-from-

upstream . 41
magit-repolist-column-unpushed-to-

pushremote . 41
magit-repolist-column-unpushed-to-

upstream . 41
magit-repolist-column-upstream 40
magit-repolist-column-version 40
magit-repolist-fetch . 41
magit-repolist-find-file-other-frame 41
magit-repolist-mark . 41
magit-repolist-status . 41
magit-repolist-unmark . 41
magit-reset-hard . 101
magit-reset-index . 71, 101
magit-reset-keep . 101
magit-reset-mixed . 100
magit-reset-quickly . 100
magit-reset-soft . 101
magit-reset-worktree 101, 118
magit-restore-window-configuration 11
magit-reverse . 72
magit-reverse-in-index . 71
magit-revert . 100
magit-revert-and-commit . 100
magit-revert-no-commit . 100
magit-run . 30
magit-run-git . 133
magit-run-git-async . 134
magit-run-git-gui . 31
magit-run-git-with-editor 134
magit-run-git-with-input 133
magit-run-gitk . 31
magit-run-gitk-all . 31
magit-run-gitk-branches . 31
magit-save-window-configuration 9
magit-section-backward . 15
magit-section-backward-siblings 15
magit-section-case . 138
magit-section-cycle . 17
magit-section-cycle-diffs 17
magit-section-cycle-global 17
magit-section-forward . 15
magit-section-forward-siblings 15
magit-section-hide . 18
magit-section-hide-children 18
magit-section-ident . 137
magit-section-match . 137
magit-section-set-window-start 16
magit-section-show . 18
magit-section-show-children 18

Appendix C: Function and Command Index 159

magit-section-show-headings 18
magit-section-show-level-1 17
magit-section-show-level-1-all 18
magit-section-show-level-2 17
magit-section-show-level-2-all 18
magit-section-show-level-3 17
magit-section-show-level-3-all 18
magit-section-show-level-4 17
magit-section-show-level-4-all 18
magit-section-toggle . 17
magit-section-toggle-children 18
magit-section-up . 15
magit-section-value-if . 137
magit-sequence-abort . 100
magit-sequence-continue . 100
magit-sequence-skip . 100
magit-shell-command . 31
magit-shell-command-topdir 31
magit-show-commit . 49, 65
magit-show-refs . 57
magit-show-refs-current . 57
magit-show-refs-head . 57
magit-show-refs-other . 57
magit-snapshot-both . 102
magit-snapshot-index . 102
magit-snapshot-worktree . 102
magit-sparse-checkout . 116
magit-sparse-checkout-add 116
magit-sparse-checkout-disable 116
magit-sparse-checkout-enable 116
magit-sparse-checkout-reapply 116
magit-sparse-checkout-set 116
magit-stage . 70
magit-stage-buffer-file . 121
magit-stage-file . 71, 121
magit-stage-modified . 71
magit-start-git . 134
magit-start-process . 134
magit-stash . 101
magit-stash-apply . 102
magit-stash-both . 101
magit-stash-branch . 103
magit-stash-branch-here . 103
magit-stash-clear . 103
magit-stash-drop . 102
magit-stash-format-patch 103
magit-stash-index . 101
magit-stash-keep-index . 101
magit-stash-list . 103
magit-stash-pop . 102
magit-stash-show . 49, 103
magit-stash-worktree . 101
magit-stashes-maybe-update-stash-buffer . . . 17
magit-status . 33
magit-status-here . 121, 123
magit-status-maybe-update-blob-buffer 16
magit-status-maybe-update-revision-buffer .16
magit-status-maybe-update-stash-buffer 16

magit-status-quick . 34
magit-submodule . 113
magit-submodule-add . 113
magit-submodule-populate 114
magit-submodule-register 113
magit-submodule-synchronize 114
magit-submodule-unpopulate 114
magit-submodule-update . 114
magit-subtree . 114
magit-subtree-add . 114
magit-subtree-add-commit 114
magit-subtree-export . 115
magit-subtree-import . 114
magit-subtree-merge . 114
magit-subtree-pull . 115
magit-subtree-push . 115
magit-subtree-split . 115
magit-switch-to-repository-buffer 117
magit-switch-to-repository-buffer-other-

frame . 117
magit-switch-to-repository-buffer-other-

window . 117
magit-tag . 111
magit-tag-create . 111
magit-tag-delete . 111
magit-tag-prune . 111
magit-tag-release . 111
magit-toggle-buffer-lock . 8
magit-toggle-git-debug 30, 148
magit-toggle-margin . 43, 46
magit-toggle-margin-details 46
magit-toggle-profiling . 149
magit-toggle-subprocess-record 148
magit-toggle-verbose-refresh 148
magit-unstage . 71
magit-unstage-all . 71
magit-unstage-buffer-file 121
magit-unstage-file . 72, 121
magit-version . 32, 148
magit-visit-ref . 59
magit-wip-commit . 119
magit-wip-log . 118
magit-wip-log-current . 118
magit-worktree . 115
magit-worktree-branch . 115
magit-worktree-checkout . 115
magit-worktree-delete . 115
magit-worktree-move . 115
magit-worktree-status . 115

S
scroll-down . 51
scroll-up . 51

Appendix C: Function and Command Index 160

W

with-editor-cancel . 77, 93

with-editor-debug . 149
with-editor-finish . 77, 93
with-editor-usage-message 80

161

Appendix D Variable Index

A
auto-revert-buffer-list-filter 14
auto-revert-interval . 14
auto-revert-mode . 13
auto-revert-stop-on-user-input 14
auto-revert-use-notify . 13
auto-revert-verbose . 14

B
branch.autoSetupMerge . 87
branch.autoSetupRebase . 87
branch.NAME.description . 87
branch.NAME.merge . 86
branch.NAME.pushRemote . 87
branch.NAME.rebase . 86
branch.NAME.remote . 86

C
core.notesRef . 112

G
git-commit-finish-query-functions 81
git-commit-known-pseudo-headers 79
git-commit-major-mode . 79
git-commit-post-finish-hook 80
git-commit-setup-hook . 79
git-commit-style-convention-checks 81
git-commit-summary-max-length 80
git-rebase-auto-advance . 95
git-rebase-confirm-cancel 95
git-rebase-show-instructions 95
global-auto-revert-mode . 13

M
magit-auto-revert-immediately 13
magit-auto-revert-mode . 13
magit-auto-revert-tracked-only 13
magit-bisect-show-graph . 62
magit-blame-disable-modes 67
magit-blame-echo-style . 66
magit-blame-goto-chunk-hook 67
magit-blame-read-only . 67
magit-blame-styles . 66
magit-blame-time-format . 67
magit-branch-adjust-remote-upstream-alist .85
magit-branch-direct-configure 82
magit-branch-prefer-remote-upstream 84
magit-branch-read-upstream-first 84
magit-buffer-name-format . 10
magit-bury-buffer-function 11

magit-cherry-margin . 48
magit-clone-always-transient 68
magit-clone-default-directory 69
magit-clone-name-alist . 69
magit-clone-set-remote-head 69
magit-clone-set-remote.pushDefault 69
magit-clone-url-format . 70
magit-commit-ask-to-stage 76
magit-commit-diff-inhibit-same-window 76
magit-commit-extend-override-date 77
magit-commit-reword-override-date 77
magit-commit-show-diff . 76
magit-commit-squash-confirm 77
magit-completing-read-function 28
magit-define-global-key-bindings 129
magit-diff-adjust-tab-width 52
magit-diff-buffer-file-locked 122
magit-diff-extra-stat-arguments 53
magit-diff-hide-trailing-cr-characters 53
magit-diff-highlight-hunk-region-

functions . 53
magit-diff-highlight-indentation 53
magit-diff-highlight-trailing 52
magit-diff-paint-whitespace 52
magit-diff-paint-whitespace-lines 52
magit-diff-refine-hunk . 52
magit-diff-refine-ignore-whitespace 52
magit-diff-unmarked-lines-keep-foreground .53
magit-diff-visit-prefer-worktree 63
magit-diff-visit-previous-blob 64
magit-direct-use-buffer-arguments 22
magit-display-buffer-function 8
magit-display-buffer-noselect 8
magit-dwim-selection . 26
magit-ediff-dwim-resolve-function 56
magit-ediff-dwim-show-on-hunks 56
magit-ediff-quit-hook . 57
magit-ediff-show-stash-with-index 57
magit-format-file-function 53
magit-generate-buffer-name-function 10
magit-git-debug . 132
magit-git-executable . 32
magit-git-global-arguments 32
magit-keep-region-overlay 27
magit-list-refs-sortby . 29
magit-log-auto-more . 44
magit-log-buffer-file-locked 122
magit-log-margin . 45
magit-log-margin-show-committer-date 45
magit-log-section-commit-count 37
magit-log-select-margin . 46
magit-log-show-color-graph-limit 44
magit-log-show-refname-after-summary 44
magit-log-show-signatures-limit 44

Appendix D: Variable Index 162

magit-log-trace-definition-function 51
magit-module-sections-hook 38
magit-module-sections-nested 39
magit-no-confirm . 24
magit-pop-revision-stack-format 78
magit-post-clone-hook . 70
magit-post-commit-hook . 76
magit-post-display-buffer-hook 9
magit-pre-display-buffer-hook 9
magit-prefer-remote-upstream 88
magit-prefix-use-buffer-arguments 22
magit-process-raise-error 135
magit-pull-or-fetch . 106
magit-reflog-margin . 47
magit-refresh-args . 139
magit-refresh-buffer-hook 12
magit-refresh-function . 139
magit-refresh-status-buffer 12
magit-refs-filter-alist . 59
magit-refs-focus-column-width 58
magit-refs-margin . 58
magit-refs-margin-for-tags 59
magit-refs-pad-commit-counts 58
magit-refs-primary-column-width 58
magit-refs-sections-hook . 61
magit-refs-show-commit-count 57
magit-refs-show-remote-prefix 58
magit-remote-add-set-remote.pushDefault . 105
magit-remote-direct-configure 104
magit-remote-git-executable 32
magit-repolist-columns . 40
magit-repository-directories 34
magit-revision-filter-files-on-follow 54
magit-revision-insert-related-refs 54
magit-revision-show-gravatars 54
magit-revision-use-hash-sections 54
magit-root-section . 138
magit-save-repository-buffers 12
magit-section-cache-visibility 18

magit-section-initial-visibility-alist 18
magit-section-movement-hook 16
magit-section-set-visibility-hook 19
magit-section-show-child-count 21
magit-section-visibility-indicators 19
magit-shell-command-verbose-prompt 31
magit-stashes-margin . 103
magit-status-file-list-limit 36
magit-status-headers-hook 37
magit-status-margin . 39
magit-status-sections-hook 34
magit-status-show-untracked-files 36
magit-submodule-list-columns 113
magit-this-process . 134
magit-uniquify-buffer-names 11
magit-unstage-committed . 71
magit-update-other-window-delay 17
magit-visit-ref-behavior . 60
magit-wip-merge-branch . 119
magit-wip-mode . 118
magit-wip-mode-lighter . 119
magit-wip-namespace . 119

N
notes.displayRef . 112

P
pull.rebase . 87

R
remote.NAME.fetch . 105
remote.NAME.push . 105
remote.NAME.pushurl . 105
remote.NAME.tagOpts . 106
remote.NAME.url . 105
remote.pushDefault . 87

	1 Introduction
	2 Installation
	Installing from Melpa
	Installing from the Git Repository
	Post-Installation Tasks

	3 Getting Started
	4 Interface Concepts
	Modes and Buffers
	Switching Buffers
	Naming Buffers
	Quitting Windows
	Automatic Refreshing of Magit Buffers
	Automatic Saving of File-Visiting Buffers
	Automatic Reverting of File-Visiting Buffers
	Risk of Reverting Automatically

	Sections
	Section Movement
	Section Visibility
	Section Hooks
	Section Types and Values
	Section Options

	Transient Commands
	Transient Arguments and Buffer Variables
	Completion, Confirmation and the Selection
	Action Confirmation
	Completion and Confirmation
	The Selection
	The hunk-internal region
	Support for Completion Frameworks
	Additional Completion Options

	Mouse Support
	Running Git
	Viewing Git Output
	Git Process Status
	Running Git Manually
	Git Executable
	Global Git Arguments

	5 Inspecting
	Status Buffer
	Status Sections
	Status File List Sections
	Status Log Sections
	Status Header Sections
	Status Module Sections
	Status Options

	Repository List
	Logging
	Refreshing Logs
	Log Buffer
	Log Margin
	Select from Log
	Reflog
	Cherries

	Diffing
	Refreshing Diffs
	Commands Available in Diffs
	Diff Options
	Revision Buffer

	Ediffing
	References Buffer
	References Sections

	Bisecting
	Visiting Files and Blobs
	General-Purpose Visit Commands
	Visiting Files and Blobs from a Diff

	Blaming

	6 Manipulating
	Creating Repository
	Cloning Repository
	Staging and Unstaging
	Staging from File-Visiting Buffers

	Applying
	Committing
	Initiating a Commit
	Creating a new commit
	Editing the last commit
	Editing any reachable commit
	Editing any reachable commit and rebasing immediately
	Options used by commit commands

	Editing Commit Messages
	Using the Revision Stack
	Commit Pseudo Headers
	Commit Mode and Hooks
	Commit Message Conventions

	Branching
	The Two Remotes
	Branch Commands
	Branch Git Variables
	Auxiliary Branch Commands

	Merging
	Resolving Conflicts
	Rebasing
	Editing Rebase Sequences
	Information About In-Progress Rebase

	Cherry Picking
	Reverting

	Resetting
	Stashing

	7 Transferring
	Remotes
	Remote Commands
	Remote Git Variables

	Fetching
	Pulling
	Pushing
	Plain Patches
	Maildir Patches

	8 Miscellaneous
	Tagging
	Notes
	Submodules
	Listing Submodules
	Submodule Transient

	Subtree
	Worktree
	Sparse checkouts
	Bundle
	Common Commands
	Wip Modes
	Wip Graph

	Commands for Buffers Visiting Files
	Minor Mode for Buffers Visiting Blobs

	9 Customizing
	Per-Repository Configuration
	Essential Settings
	Safety
	Performance
	Microsoft Windows Performance
	MacOS Performance

	Global Bindings

	10 Plumbing
	Calling Git
	Getting a Value from Git
	Calling Git for Effect

	Section Plumbing
	Creating Sections
	Section Selection
	Matching Sections

	Refreshing Buffers
	Conventions
	Theming Faces

	A FAQ
	FAQ - How to ...?
	How to pronounce Magit?
	How to show git's output?
	How to install the gitman info manual?
	How to show diffs for gpg-encrypted files?
	How does branching and pushing work?
	Should I disable VC

	FAQ - Issues and Errors
	Magit is slow
	I changed several thousand files at once and now Magit is unusable
	I am having problems committing
	I am using MS Windows and cannot push with Magit
	I am using macOS and SOMETHING works in shell, but not in Magit
	Expanding a file to show the diff causes it to disappear
	Point is wrong in the COMMIT_EDITMSG buffer
	The mode-line information isn't always up-to-date
	A branch and tag sharing the same name breaks SOMETHING
	My Git hooks work on the command-line but not inside Magit
	git-commit-mode isn't used when committing from the command-line
	Point ends up inside invisible text when jumping to a file-visiting buffer
	I am no longer able to save popup defaults

	11 Debugging Tools
	B Keystroke Index
	C Function and Command Index
	D Variable Index

