Ghub User and Developer Manual

for version 5.0.2

Jonas Bernoulli

Copyright (C) 2017-2025 Jonas Bernoulli <emacs.ghub@jonas.bernoulli.dev>
You can redistribute this document and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

Table of Contents

1 Introduction............., 1
2 Getting Started 2
2.1 Basic Concepts, Arguments and Variables........................ 2
2.2 Setting the Username.ot . 3
2.3 Creating and Storing a Token............o ... 4
2.3.1 Creating a Tokenot 4

2.3.2 Storing a Token 5

2.4 Github Configuration Variables............., 5

3 API .. 7
3.1 Their APIS . .o 7
3.2 Making REST Requestsccooiiiiiiii i 7
3.3 Making GraphQL Requests...........co ... 10
3.4 Github Convenience Wrappers.o.oeveviiiieenienennnn... 12

4 Notes 13
4.1 Using Ghub in Personal Scripts.............coiiiiiiiiiiiiin. 13
4.2 Using Ghub in Your Own Package................. 13
4.3 Forge Limitations and Notes.............. ... i 13
Appendix A Function Index..................... 14

Appendix B Variable Index 15

1 Introduction

Ghub is an Emacs library that is used by various packages to access the APIs of various
instances of various Git forge implementations.

A forge is a web-based collaborative software platform for developing and distributing
computer applications. Examples include Github and Gitlab.

2 Getting Started

This manual guides you through the steps that are necessary to use the Forge package
and/or to make a request using just Ghub itself, such as this:

(ghub-request "GET" "/user")

To be able to do that, Ghub needs to know who you want to talk to, who you are, and
how you are going to prove the latter to the former.

Additionally Ghub wants to know on behalf of which Emacs package it is making a
request. So the question of "who is making the request" has to be rephrased as "which
human (or bot) is using what (Emacs) package to make the request". If, for example, the
human known as "tarsius" is using the forge package, then that is represented in some
places using the string "tarsius/orge".

2.1 Basic Concepts, Arguments and Variables

(If you are trying to configure Forge for https://github.com and/or https://gitlab.
com, then you can skip this section.)

Originally Ghub supported only Github but now it also supports Gitlab, Gitea, Gogs
and Bitbucket. Because of that, the function ghub-request defaults to acting on a github
forge, but can be told to act on other forges using the FORGE argument.

The FORGE argument only specifies what kind of forge we are accessing, not which host
specifically. The HOST argument can be used to select the instance. For some forges a
default instance is defined:

e Forge github defaults to host api.github.com.
e Forge gitlab defaults to host gitlab.com/api/v4.
e Forge bitbucket defaults to host api.bitbucket.org/2.0.

e No canonical host exists for the gitea and gogs forges and localhost:3000/api/v1
is used as the default host in both cases.

Together the FORGE and HOST arguments specify the forge type and instance. In
addition to that, it is also necessary to specify on whose behalf the request is being made,
which can be done using the USERNAME and AUTH arguments. For example:

(ghub-request "GET" "/user" nil
:forge 'github
:host "api.github.com"
:username "tarsius"
:auth 'forge)

Having to specify these arguments for every request is inconvenient. Additional variables
and convenience functions can be used to make that unnecessary in most cases.

(But for debugging purposes the above explicit form is very useful. You will obviously
have to change the value of USERNAME and you should use ghub as AUTH when first
trying this at home.)

These variables can be set globally and/or for a specific repository.

e For "api.github.com" (aka the API of https://github.com) the Git variable
github.user specifies the user.

https://github.com
https://gitlab.com
https://gitlab.com
https://github.com

Chapter 2: Getting Started 3

e For another github instance the Git variable github.HOST.user specifies the user.
The HOST in that variable name is the same as the value of the HOST argument of
the called function.

e Instead of specifying the HOST in every function call, the Git variable github.host
can be used. This should only be set locally.
These github specific variables are discussed in more detail in Section 2.4 [Github Con-
figuration Variables], page 5.
For gitlab and bitbucket forges similar variables are available:
e gitlab.user specifies the https://gitlab.com user.
e gitlab.HOST.user specifies the user for the HOST gitlab instance.
e gitlab.host specifies the gitlab host, unless the HOST argument is non-nil
e bitbucket.user specifies the https://bitbucket.org user.
e bitbucket.HOST.user specifies the user for the HOST bitbucket instance.
e bitbucket.host specifies the bitbucket host, unless the HOST argument is non-nil.
For the gitea and gogs forges some similar variables are available, however for some of
the ghub.* variables no equivalent variable exist for these two forges:
e gitea.user is not used because no canonical gitea instance exists.
e gitea.HOST.user specifies the user for the HOST gitea instance.
e gitea.host specifies the gitea host, unless the HOST argument is non-nil
e gogs.user is not used because no canonical gogs instance exists.
e gogs .HOST.user specifies the user for the HOST gogs instance.
e gogs.host specifies the gogs host, unless the HOST argument is non-nil

2.2 Setting the Username

Ghub needs to know your username, which you use on the host that you want it to connect
to. For each host a different Git variable has to be set, to specify the username on that host.
More than one variable is needed, because you might use different usernames on different
hosts.

Setting your Github.com Username
To inform Ghub about your "github.com" username do this:
git config --global github.user USERNAME

If you need to identify as another user in a particular repository, then you have to set
that variable locally:

cd /path/to/repo
git config --local github.user USERNAME
Setting your Gitlab.com Username

To inform Ghub about your "gitlab.com" username do this:

git config --global gitlab.user USERNAME

https://gitlab.com
https://bitbucket.org

Chapter 2: Getting Started 4

If you need to identify as another user in a particular repository, then you have to set
that variable locally:

cd /path/to/repo
git config --local gitlab.user USERNAME

Make sure you use the correct USERNAME for this forge/host. It might not be the
same as on "github.com"!

Setting your Github Enterprise Username
For Github Enterprise instances you have to specify where the API can be accessed and a
different variable has to be used to set the username.

For example if the API is available at https://example.com/api/v3, then you should
do this:

git config --global github.example.com/api/v3.user USERNAME

Make sure you use the correct USERNAME for this instance. It might not be the same
as on "github.com"!

Doing this only tells Ghub who you are on this host, additionally you have to tell Ghub
which repositories are connected to that forge/host, like so:

cd /path/to/repo
git config --local github.host example.com/api/v3

Setting your Username for Other Hosts and/or Forges

To inform Ghub about your username on HOST (a FORGE instance) do this:
git config --global FORGE.HOST.user USERNAME

FORGE can be one of bitbucket, gitea or gogs. It can also be github or gitlab; but
if that is the case, then you should look at the preceding sections instead, which discuss
these cases specifically.

HOST identifies the instance. This actually points at the top-level endpoint of the API
and may contain path components, e.g.: example.com/api.

If you need to identify as another user in a particular repository, then you have to set
that variable locally:

cd /path/to/repo
git config --local FORGE.HOST.user USERNAME

2.3 Creating and Storing a Token

2.3.1 Creating a Token

To create a token, use the web interface of the host you want to connect to. Here is a list
of pages to do this for certain popular hosts:
e https://github.com/settings/tokens
e https://gitlab.com/-/user_settings/personal_access_tokens
For other forges we cannot provide a functioning URL because they contain unknown

values such as your name. Just go to the general settings page of the respective host and
then go from there.

https://github.com/settings/tokens
https://gitlab.com/-/user_settings/personal_access_tokens

Chapter 2: Getting Started 5

Except on gitea and gogs each token can be limited to certain "scopes", i.e., it is
possible to limit for which purposes any given token can be used.

Before you create a token to be used for a certain package, you should consult the
documentation of that package, which in turn should tell you which scopes are needed and
why. The Forge package for example does so in Section “Token Creation” in forge.

2.3.2 Storing a Token

Please also see auth for all the gory details about Auth-Source.

The variable auth-sources controls how and where Auth-Source keeps its secrets. The
default value is a list of three files: ("~/.authinfo" "~/.authinfo.gpg" "~/.netrc"),
but to avoid confusion you should make sure that only one of these files exists, and then
you should also adjust the value of the variable to only ever use that file, for example:

(setq auth-sources '("7/.authinfo"))

In ~/.authinfo secrets are stored in plain text. If you don’t want that, then you should
use the encrypted ~/.authinfo.gpg instead:

(setq auth-sources '("~/.authinfo.gpg"))

Auth-Source also supports storing secrets in various external key-chains. See auth for
more information.

The default Auth-Source backends only support storing three values per entry; the "ma-
chine", the "login" and the "password". Because Ghub uses separate tokens for each
package, it has to squeeze four values into those three slots, and it does that by using
"USERNAME” ACK AGE" as the "login".

Assuming your Github username is "ziggy", the package is named "forge", and you
want to access Github.com with the token "012345abcdef. . . ", an entry in one of the three
mentioned files would then look like this:

machine api.github.com login ziggy forge password 012345abcdef. ..
Assuming your Gitlab username is "ziggy", the package is named "forge", and you

want to access Gitlab.com with the token "012345abcdef. . .", an entry in one of the three
mentioned files would then look like this:

machine gitlab.com/api/v4 login ziggy forge password 012345abcdef. ..

2.4 Github Configuration Variables

The username and, unless you only use Github.com itself, the Github Enterprise instance
have to be configured using Git variables. In rare cases it might also be necessary to specify
the identity of the local machine, which is done using a lisp variable.

github.user [Variable]
The Github.com username. This should be set globally and if you have multiple
Github.com user accounts, then you should set this locally only for those repositories
that you want to access using the secondary identity.

github.HOST.user [Variable]
This variable serves the same purpose as github.user but for the Github Enterprise
instance identified by HOST.

Chapter 2: Getting Started 6

The reason why separate variables are used is that this makes it possible to set both
values globally instead of having to set one of the values locally in each and every
repository that is connected to the Github Enterprise instance, not Github.com.

github.host [Variable]
This variable should only be set locally for a repository and specifies the Github
Enterprise edition that that repository is connected to. You should not set this
globally because then each and every repository becomes connected to the specified
Github Enterprise instance, including those that should actually be connected to
Github.com.

When this is undefined, then "api.github.com" is used (defined in the constant ghub-
default-host, which you should never attempt to change.)

3 API

3.1 Their APIs

Of course this manual does not cover the APIs of all forges that it supports, but for your
convenience, here are the links to their API manuals:

e Github:
e https://docs.github.com/en/graphql (GraphQl)
e https://docs.github.com/en/rest (REST)
Gitlab:
e https://docs.gitlab.com/api
Gitea:
e https://docs.gitea.com/next/development/api-usage

e https://demo.gitea.com
o Gogs:
e https://gogs.io/docs
Bitbucket:
e https://developer.atlassian.com/cloud/bitbucket

3.2 Making REST Requests

ghub-request method resource &optional params &key query payload [Function]
headers unpaginate noerror reader username auth host callback
errorback url value error extra method*
This function makes a request for RESOURCE using METHOD. PARAMS, QUERY, PAYLOAD
and/or HEADERS are alists holding additional request data. The response body is
returned and the response headers are stored in the variable ghub-response-headers.

e METHOD is the HTTP method, given as a string.

e RESOURCE is the resource to access, given as a string beginning with a slash.

e PARAMS, QUERY, PAYLOAD and HEADERS are alists and are used to specify request
data. All these arguments are alists that resemble the JSON expected and re-
turned by the Github API. The keys are symbols and the values stored in the
cdr (not the cadr) can be strings, integers, or lists of strings and integers.

The Github API documentation is vague on how data has to be transmitted and
for a particular resource usually just talks about "parameters". Generally speak-
ing when the METHOD is "HEAD" or "GET", then they have to be transmitted
as a query, otherwise as a payload.
e Use PARAMS to automatically transmit like QUERY or PAYLOAD would depend-
ing on METHOD.
e Use QUERY to explicitly transmit data as a query.

e Use PAYLOAD to explicitly transmit data as a payload. Instead of an alist,
PAYLOAD may also be a string, in which case it gets encoded as UTF-8 but
is otherwise transmitted as-is.

https://docs.github.com/en/graphql
https://docs.github.com/en/rest
https://docs.gitlab.com/api
https://docs.gitea.com/next/development/api-usage
https://demo.gitea.com
https://gogs.io/docs
https://developer.atlassian.com/cloud/bitbucket

Chapter 3: API 8

e Use HEADERS for those rare resources that require that the data is transmitted
as headers instead of as a query or payload. When that is the case, then the
Github APT documentation usually mentions it explicitly.

If SILENT is non-nil, then progress reports and the like are not messaged.

If UNPAGINATE is t, then this function makes as many requests as necessary to
get all values. If UNPAGINATE is a natural number, then it gets at most that many
pages. For any other non-nil value it raises an error.

If NOERROR is non-nil, then no error is raised if the request fails and nil is
returned instead. If NOERROR is return, then the error payload is returned instead
of nil.

If READER is non-nil, then it is used to read and return from the response buffer.
The default is ghub--read-json-payload. For the very few resources that do
not return JSON, you might want to use ghub--decode-payload.

If USERNAME is non-nil, then the request is made on behalf of that user. It is bet-
ter to specify the user using the Git variable github.user for "api.github.com",
or github.HOST.user if connecting to a Github Enterprise instance.

FEach package that uses Ghub should use its own token. If AUTH is nil or un-
specified, then the generic ghub token is used instead. This is only acceptable
for personal utilities. A package that is distributed to other users should always
use this argument to identify itself, using a symbol matching its name.

Package authors who find this inconvenient should write a wrapper around this
function and possibly for the method-specific functions as well.

Beside nil, some other symbols have a special meaning too. none means to make
an unauthorized request. basic means to make a password based request. If the
value is a string, then it is assumed to be a valid token. basic and an explicit
token string are only intended for internal and debugging uses.

If AUTH is a package symbol, then the scopes are specified using the variable
AUTH-github-token-scopes. It is an error if that is not specified. See ghub-
github-token-scopes for an example.

If HOST is non-nil, then connect to that Github instance. This defaults to
"api.github.com". When a repository is connected to a Github Enterprise in-
stance, then it is better to specify that using the Git variable github.host
instead of using this argument.

If FORGE is gitlab, then connect to Gitlab.com or, depending on HOST, to another
Gitlab instance.

If CALLBACK and/or ERRORBACK is non-nil, then this function makes one or more
asynchronous requests and calls CALLBACK or ERRORBACK when finished. If no
error occurred, then it calls CALLBACK, unless that is nil.

If an error occurred, then it calls ERRORBACK, or if that is nil, then CALLBACK.
ERRORBACK can also be t, in which case it signals instead. NOERROR is ignored for
all asynchronous requests.

Both callbacks are called with four arguments.

1. For CALLBACK, the combined value of the retrieved pages. For ERRORBACK,
the error that occurred when retrieving the last page.

Chapter 3: API 9

2. The headers of the last page as an alist.

3. Status information provided by url-retrieve. Its :error property holds
the same information as the first argument to ERRORBACK.

4. A ghub--req struct, which can be passed to ghub-continue (which see) to
retrieve the next page, if any.

ghub-continue args [Function]
If there is a next page, then this function retrieves that.

This function is only intended to be called from callbacks. If there is a next page,
then that is retrieved and the buffer that the result will be loaded into is returned,
or t if the process has already completed. If there is no next page, then return nil.

Callbacks are called with four arguments (see ghub-request). The forth argument is
a ghub--req struct, intended to be passed to this function. A callback may use the
struct’s extra slot to pass additional information to the callback that will be called
after the next request. Use the function ghub-req-extra to get and set the value of
that slot.

As an example, using ghub-continue in a callback like so:

(ghub-get "/users/tarsius/repos" nil
:callback (lambda (value _headers _status req)
(unless (ghub-continue req)
(setq my-value value))))

is equivalent to:

(ghub-get "/users/tarsius/repos" nil
:unpaginate t
:callback (lambda (value _headers _status _req)
(setq my-value value)))

To demonstrate how to pass information from one callback to the next, here we record
when we start fetching each page:

(ghub-get "/users/tarsius/repos" nil
rextra (list (current-time))
:callback (lambda (value _headers _status req)
(push (current-time) (ghub-req-extra req))
(unless (ghub-continue req)
(setq my-times (ghub-req-extra req))
(setq my-value value))))

ghub-response-headers [Variable]
A select few Github API resources respond by transmitting data in the response
header instead of in the response body. Because there are so few of these inconsis-
tencies, ghub-request always returns the response body.

To access the response headers use this variable after ghub-request has returned.

ghub-response-link-relations req headers payload [Function]
This function returns an alist of the link relations in HEADERS, or if optional HEADERS
is nil, then those in ghub-response-headers.

Chapter 3: API 10

When accessing a Bitbucket instance then the link relations are in PAYLOAD instead of
HEADERS, making their API merely RESTish and forcing this function to append those
relations to the value of ghub-response-headers, for later use when this function is
called with nil for PAYLOAD.

3.3 Making GraphQL Requests

ghub-graphql graphql &optional variables &key username auth host [Function]
callback silent callback errorback value extra
This function makes a GraphQL request using GRAPHQL and VARIABLES as inputs.
GRAPHQL is a GraphQL string. VARTIABLES is a JSON-like alist. The other arguments
behave as for ghub-request (which see).

The response is returned as a JSON-like alist. Even if the response contains errors,
this function does not raise an error. Cursor-handling is likewise left to the caller.

ghub-graphql is a thin convenience wrapper around ghub-request, similar to ghub-
post and friends. While the latter only hard-code the value of the METHOD argument, the
former also hard-codes RESOURCE and constructs PAYLOAD from GRAPHQL and VARIABLES. It
also drops UNPAGINATE, NOERROR, READER (internal functions expect alist-ified JSON) and
FORGE (only Github currently supports GraphQL).

ghub-graphql does not account for the fact that pagination works differently in
GraphQL than it does in REST, so users of this function have to deal with that themselves.
Likewise error handling works differently and has to be done by the caller too.

An early attempt at implementing automatic unpaginating for GraphQL can be found
in the faithful-graphql branch, provided I haven’t deleted that by now. On that branch
I try to do things as intended by the designers of GraphQL, using variables and fragments,
and drowning in a sea of boilerplate.

The problem with that approach is that it only works for applications that fetch specific
information on demand and actually want things to be paginated. I am convinced that
GraphQL is very nice for web apps.

However the Forge package for which I have implemented all of this has very different
needs. It wants to fetch "all the data" and "cache" it locally, so that it is available even
when there is no internet connection. GraphQL was designed around the idea that you
should be able to "ask for what you need and get exactly that". But when that boils down
to "look, if I persist, then you are going to hand me over all the data anyway, so just caught
it up already", then things start to fall apart. If Github’s GraphQL allowed pagination
to be turned off completely, then teaching ghub-graphql about error handling would be
enough.

But it doesn’t and when doing things as intended, then that leads to huge amounts of
repetitive boilerplate, which is so boring to write that doing it without introducing bugs left
and right is near impossible; so I decided to give up on GraphQL variables, fragments and
conditions, and instead implement something more powerful, though also more opinionated.

ghub--graphql-vacuum query variables callback &optional until &key [Function]
narrow username auth host forge
This function is an opinionated alternative to ghub-graphql. It relies on dark magic
to get the job done.

Chapter 3: API 11

It makes an initial request using QUERY. It then looks for paginated edges in the
returned data and makes more requests to resolve them. In order to do so it auto-
matically transforms the initial QUERY into another query suitable for that particular
edge. The data retrieved by subsequent requests is then injected into the data of
the original request before that is returned or passed to the callback. If subsequently
retrieved data features new paginated edges, then those are followed recursively.

The end result is essentially the same as using ghub-graphql, if only it were possible
to say "do not paginate anything". The implementation is much more complicated
because it is not possible to do that.

QUERY is a GraphQL query expressed as an s-expression. The bundled gsexp library
is used to turn that into a GraphQL query string. Only a subset of the GraphQL
features are supported; fragments for example are not, and magical stuff happens to
variables. This is not documented yet, I am afraid. Look at existing callers.

VARIABLES is a JSON-like alist as for ghub-graphql.

UNTIL is an alist ((EDGE-until . VALUE)...). When unpaginating EDGE try not
to fetch beyond the element whose first field has the value VALUE and remove that
element as well as all "lesser" elements from the retrieved data if necessary. Look
at forge--pull-repository for an example. This is only useful if you "cache" the
response locally and want to avoid fetching data again that you already have.

Other arguments behave as for ghub-graphql and ghub-request, more or less. If
CALLBACK is nil, pretty-print the response.

Using ghub--graphql-vacuun, the following resource specific functions are implemented.
These functions are not part of the public API yet and are very much subject to change.

ghub-fetch-repository owner name callback &optional until &key [Function]
username auth host forge
This function asynchronously fetches forge data about the specified repository. Once
all data has been collected, CALLBACK is called with the data as the only argument.

ghub-fetch-issue owner name callback &optional until &key [Function]
username auth host forge
This function asynchronously fetches forge data about the specified issue. Once all
data has been collected, CALLBACK is called with the data as the only argument.

ghub-fetch-pullreq owner name callback &optional until &key [Function]
username auth host forge
This function asynchronously fetches forge data about the specified pull-request. Once
all data has been collected, CALLBACK is called with the data as the only argument.

Note that in order to avoid duplication all of these functions base their initial query on
the query stored in ghub-fetch-repository. The latter two pass that query through
ghub--graphql-prepare-query, which then uses ghub--graphql-narrow-query to re-
move parts the caller is not interested in. These two functions are also used internally,
when unpaginating, but as demonstrated here they can be useful even before making an
initial request.

Chapter 3: API 12

3.4 Github Convenience Wrappers

ghub-head resource &optional params &key query payload headers [Function]
unpaginate noerror reader username auth host callback errorback

ghub-get resource &optional params &key query payload headers [Function]
unpaginate noerror reader username auth host callback errorback
These functions are simple wrappers around ghub-request. Their signature is iden-
tical to that of the latter, except that they do not have an argument named METHOD.
The HTTP method is instead given by the second word in the function name.

As described in the documentation for ghub-request, it depends on the used method
whether the value of the PARAMS argument is used as the query or the payload. For
the "HEAD" and "GET" methods it is used as the query.

ghub-put resource &optional params &key query payload headers [Function]
unpaginate noerror reader username auth host callback errorback

ghub-post resource &optional params &key query payload headers [Function]
unpaginate noerror reader username auth host callback errorback

ghub-patch resource &optional params &key query payload headers [Function]
unpaginate noerror reader username auth host callback errorback

ghub-delete resource &optional params &key query payload headers [Function]
unpaginate noerror reader username auth host callback errorback
These functions are simple wrappers around ghub-request. Their signature is iden-
tical to that of the latter, except that they do not have an argument named METHOD.
The HTTP method is instead given by the second word in the function name.

As described in the documentation for ghub-request, it depends on the used method
whether the value of the PARAMS argument is used as the query or the payload. For
the "PUT", "POST", "PATCH" and "DELETE" methods it is used as the payload.

ghub-wait resource &optional duration &key username auth host [Function]
Some API requests result in an immediate successful response even when the requested
action has not actually been carried out yet. An example is the request for the cre-
ation of a new repository, which doesn’t cause the repository to immediately become
available. The Github API documentation usually mentions this when describing an
affected resource.
If you want to do something with some resource right after making a request for its
creation, then you might have to wait for it to actually be created. This function can
be used to do so. It repeatedly tries to access the resource until it becomes available
or until a timeout is reached. In the latter case it signals ghub-error.
RESOURCE specifies the resource that this function waits for.
DURATION specifies the maximum number of seconds to wait for, defaulting to 64
seconds. Emacs will block during that time, but the user can abort using C-g.
The first attempt is made immediately and will often succeed. If not, then another
attempt is made after two seconds, and each subsequent attempt is made after waiting
as long as we already waited between all preceding attempts combined.
See ghub-request’s documentation above for information about the other arguments.

13

4 Notes

4.1 Using Ghub in Personal Scripts

You can of course use ghub-request and its wrapper functions in your personal scripts.
Unlike when you use Ghub in a package that you distribute for others to use, you don’t
have to explicitly specify a package in personal scripts.

;; This is perfectly acceptable in personal scripts ...

(ghub-get "/user")

;3 ... and actually equals to
(ghub-get "/user" nil :auth 'ghub)

;3 In packages you have to specify the package using AUTH.
(ghub-get "/user" nil :auth 'some-package)

When the AUTH argument is not specified, then a request is made on behalf of the ghub
package itself. Like for any other package you have to create a dedicated token of course.

4.2 Using Ghub in Your Own Package

Every package should use its own token. This allows you as the author of some package to
only request access to API scopes that are actually needed, which in turn might make it
easier for users to trust your package not to do unwanted things.

You have to tell ghub-request on behalf of which package a request is being made by
passing the symbol PACKAGE as the value of its AUTH argument.

(ghub-request "GET" "/user" nil :auth 'PACKAGE)

Keep in mind that the users of your package will have to manually create a suitable
token. To make that easier, you should not only link to this manual but also prominently
mention the scopes the token needs; and explain what they are needed for.

4.3 Forge Limitations and Notes
e There are no default Gitea and Gogs instances so the variables gitea.host and
gogs .host are not taken into account.
e Gitea and Gogs do not support limiting a token to certain scopes.

e The Bitbucket API is fairly broken and my willingness to deal with that is extremely
limited unless someone pays me vast amounts of money.

e The Gitlab API documentation is not always accurate, though I don’t have an exam-
ple at hand. It also isn’t structured well, making it occasionally difficult to find the
information one is looking for.

e Where one would use user/repo when accessing another forge, one has to use
usery%2Frepo when accessing Gitlab, e.g.:

(ghub-get "/projects/python-mode-devs’,2Fpython-mode"
nil :forge 'gitlab)

14

Appendix A Function Index

ghub--graphgl-vacuum........................ 10
ghub-continue..................... 9
ghub-delete.............ooiiiiiiiiiiin., 12
ghub-fetch-issue..................oiie... 11
ghub-fetch-pullreq.............cooivuvinnn. 11
ghub-fetch-repository 11
ghub-get ... 12

ghub-graphql.................................. 10

ghub-head i 12
ghub-patch...................... ...l 12
ghub-post ... 12
ghub-put i 12
ghub-request..........cooiiiiiiiiiii.. 7
ghub-response-link-relations 9
ghub-wait................l 12

Appendix B Variable Index

ghub-response-headers 9
github.host....... ... 6
github . HOST.user.............................. 5

github.user..........o 5

15

	Table of Contents
	1 Introduction
	2 Getting Started
	Basic Concepts, Arguments and Variables
	Setting the Username
	Creating and Storing a Token
	Creating a Token
	Storing a Token

	Github Configuration Variables

	3 API
	Their APIs
	Making REST Requests
	Making GraphQL Requests
	Github Convenience Wrappers

	4 Notes
	Using Ghub in Personal Scripts
	Using Ghub in Your Own Package
	Forge Limitations and Notes

	A Function Index
	B Variable Index

