
Magit-Section Developer Manual
for version 4.4.2

Jonas Bernoulli

Copyright (C) 2015-2025 Jonas Bernoulli <emacs.magit@jonas.bernoulli.dev>

You can redistribute this document and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

i

Table of Contents

1 Introduction . 1

2 Creating Sections . 2

3 Core Functions . 4

4 Matching Functions . 6

1

1 Introduction

This package implements the main user interface of Magit — the collapsible sections that
make up its buffers. This package used to be distributed as part of Magit but how it can
also be used by other packages that have nothing to do with Magit or Git.

To learn more about the section abstraction and available commands and user options
see Section “Sections” in magit. This manual documents how you can use sections in your
own packages.

When the documentation leaves something unaddressed, then please consider that Magit
uses this library extensively and search its source for suitable examples before asking me
for help. Thanks!

2

2 Creating Sections

[Macro]magit-insert-section [name] (type &optional value hide) &rest body
Create a section object of type CLASS, storing VALUE in its value slot, and insert
the section at point. CLASS is a subclass of ‘magit-section’ or has the form (eval

FORM), in which case FORM is evaluated at runtime and should return a subclass. In
other places a sections class is often referred to as its "type".

Many commands behave differently depending on the class of the current section and
sections of a certain class can have their own keymap, which is specified using the
‘keymap’ class slot. The value of that slot should be a variable whose value is a
keymap.

For historic reasons Magit and Forge in most cases use symbols as CLASS that don’t
actually identify a class and that lack the appropriate package prefix. This works due
to some undocumented kludges, which are not available to other packages.

When optional HIDE is non-nil collapse the section body by default, i.e., when first
creating the section, but not when refreshing the buffer. Else expand it by default.
This can be overwritten using magit-section-set-visibility-hook. When a sec-
tion is recreated during a refresh, then the visibility of predecessor is inherited and
HIDE is ignored (but the hook is still honored).

BODY is any number of forms that actually insert the section’s heading and body.
Optional NAME, if specified, has to be a symbol, which is then bound to the object
of the section being inserted.

Before BODY is evaluated the start of the section object is set to the value of ‘point’
and after BODY was evaluated its end is set to the new value of point; BODY is
responsible for moving point forward.

If it turns out inside BODY that the section is empty, then magit-cancel-section

can be used to abort and remove all traces of the partially inserted section. This
can happen when creating a section by washing Git’s output and Git didn’t actually
output anything this time around.

[Function]magit-insert-heading [child-count] &rest args
Insert the heading for the section currently being inserted.

This function should only be used inside magit-insert-section.

When called without any arguments, then just set the content slot of the object
representing the section being inserted to a marker at point. The section should only
contain a single line when this function is used like this.

When called with arguments ARGS, which have to be strings, or nil, then insert
those strings at point. The section should not contain any text before this happens
and afterwards it should again only contain a single line. If the face property is set
anywhere inside any of these strings, then insert all of them unchanged. Otherwise
use the ‘magit-section-heading’ face for all inserted text.

The content property of the section object is the end of the heading (which lasts from
start to content) and the beginning of the the body (which lasts from content

to end). If the value of content is nil, then the section has no heading and its

Chapter 2: Creating Sections 3

body cannot be collapsed. If a section does have a heading, then its height must be
exactly one line, including a trailing newline character. This isn’t enforced, you are
responsible for getting it right. The only exception is that this function does insert a
newline character if necessary.

If provided, optional CHILD-COUNT must evaluate to an integer or boolean. If
t, then the count is determined once the children have been inserted, using magit-

insert-child-count (which see). For historic reasons, if the heading ends with ":",
the count is substituted for that, at this time as well. If magit-section-show-child-
count is nil, no counts are inserted

[Macro]magit-insert-section-body &rest body
Use BODY to insert the section body, once the section is expanded. If the section is
expanded when it is created, then this is like progn. Otherwise BODY isn’t evaluated
until the section is explicitly expanded.

[Function]magit-cancel-section
Cancel inserting the section that is currently being inserted. Remove all traces of
that section.

[Function]magit-wash-sequence function
Repeatedly call FUNCTION until it returns nil or the end of the buffer is reached.
FUNCTION has to move point forward or return nil.

4

3 Core Functions

[Function]magit-current-section
Return the section at point or where the context menu was invoked. When using the
context menu, return the section that the user clicked on, provided the current buffer
is the buffer in which the click occurred. Otherwise return the section at point.

Function magit-section-at &optional position
Return the section at POSITION, defaulting to point. Default to point even
when the context menu is used.

[Function]magit-section-ident section
Return an unique identifier for SECTION. The return value has the form ((TYPE .

VALUE)...).

[Function]magit-section-ident-value value
Return a constant representation of VALUE.

VALUE is the value of a magit-section object. If that is an object itself, then that is
not suitable to be used to identify the section because two objects may represent the
same thing but not be equal. If possible a method should be added for such objects,
which returns a value that is equal. Otherwise the catch-all method is used, which
just returns the argument itself.

[Function]magit-get-section ident &optional root
Return the section identified by IDENT. IDENT has to be a list as returned by
magit-section-ident. If optional ROOT is non-nil, then search in that section
tree instead of in the one whose root magit-root-section is.

[Function]magit-section-lineage section &optional raw
Return the lineage of SECTION. If optional RAW is non-nil, return a list of section
objects, beginning with SECTION, otherwise return a list of section types.

[Function]magit-section-content-p section
Return non-nil if SECTION has content or an unused washer function.

The next two functions are replacements for the Emacs functions that have the same
name except for the magit- prefix. Like magit-current-section they do not act on point,
the cursors position, but on the position where the user clicked to invoke the context menu.

If your package provides a context menu and some of its commands act on the "thing
at point", even if just as a default, then use the prefixed functions to teach them to instead
use the click location when appropriate.

Function magit-point
Return point or the position where the context menu was invoked. When using
the context menu, return the position the user clicked on, provided the current
buffer is the buffer in which the click occurred. Otherwise return the same value
as point.

Chapter 3: Core Functions 5

Function magit-thing-at-point thing &optional no-properties
Return the THING at point or where the context menu was invoked. When
using the context menu, return the thing the user clicked on, provided the cur-
rent buffer is the buffer in which the click occurred. Otherwise return the same
value as thing-at-point. For the meaning of THING and NO-PROPERTIES
see that function.

6

4 Matching Functions

[Function]magit-section-match condition &optional (section
(magit-current-section))

Return t if SECTION matches CONDITION.

SECTION defaults to the section at point. If SECTION is not specified and there
also is no section at point, then return nil.

CONDITION can take the following forms:

• (CONDITION...) matches if any of the CONDITIONs matches.

• [CLASS...] matches if the section’s class is the same as the first CLASS or a
subclass of that; the section’s parent class matches the second CLASS; and so
on.

• [* CLASS...] matches sections that match [CLASS. . .] and also recursively all
their child sections.

• CLASS matches if the section’s class is the same as CLASS or a subclass of that;
regardless of the classes of the parent sections.

Each CLASS should be a class symbol, identifying a class that derives from magit-

section. For backward compatibility CLASS can also be a "type symbol". A section
matches such a symbol if the value of its type slot is eq. If a type symbol has an
entry in magit--section-type-alist, then a section also matches that type if its
class is a subclass of the class that corresponds to the type as per that alist.

Note that it is not necessary to specify the complete section lineage as printed by
magit-describe-section-briefly, unless of course you want to be that precise.

[Function]magit-section-value-if condition &optional section
If the section at point matches CONDITION, then return its value.

If optional SECTION is non-nil then test whether that matches instead. If there is
no section at point and SECTION is nil, then return nil. If the section does not
match, then return nil.

See magit-section-match for the forms CONDITION can take.

[Macro]magit-section-case &rest clauses
Choose among clauses on the type of the section at point.

Each clause looks like (CONDITION BODY...). The type of the section is compared
against each CONDITION; the BODY forms of the first match are evaluated sequen-
tially and the value of the last form is returned. Inside BODY the symbol it is bound
to the section at point. If no clause succeeds or if there is no section at point, return
nil.

See magit-section-match for the forms CONDITION can take. Additionally a
CONDITION of t is allowed in the final clause, and matches if no other CONDI-
TION match, even if there is no section at point.

	Table of Contents
	1 Introduction
	2 Creating Sections
	3 Core Functions
	4 Matching Functions

