Transient User and Developer Manual

for version 0.10.1

Jonas Bernoulli

Copyright (C) 2018-2025 Free Software Foundation, Inc.

You can redistribute this document and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

Table of Contents

1 Introduction............., 1
2 USABE ..ottt 3
2.1 Invoking Transients..............oooiiiiiiiiiiiiiiiiiiann. 3
2.2 Aborting and Resuming Transientscoiiiii .. 3
2.3 Common Suffix Commands............. .o 4
2.4 Saving Values 5
2.5 Using Historyo 5
2.6 Getting Help for Suffix Commands................ 6
2.7 Enabling and Disabling Suffixes............... L. 6
2.8 Other Commandsouiutiiiiiii e 8
2.9 Configurationttt e 9

3 Modifying Existing Transients................. 14
4 Defining New Commands...................... 16
4.1 Technical Introduction............ ..o i, 16
4.2 Defining Transients., 17
4.3 Binding Suffix and Infix Commands 18
4.3.1 Group Specifications......... ... 18

4.3.2 Suffix Specificationso i 21

4.4 Defining Suffix and Infix Commands............................ 22
4.5 Using Infix Arguments., 23
4.6 Using Prefix Scopeooiiii 24
4.7 Current Suffix Command i i 25
4.8 Current Prefix Command. ...t 26
4.9 Transient State..........oouiiiiii 26

5 Classes and Methods........................... 30
5.1 Group Classesttt e 30
5.2 Group Methodso 31
5.3 Prefix Classeso 31
5.4 Suffix Classes.ottt e 31
5.5 Prefix Methods. ... 33
5.6 Suffix Methods 34
5.6.1 Suffix Value Methods............ ... i i, 34

5.6.2 Suffix Format Methods ool 35

5.7 Prefix Slots . ..o 36
5.8 Suffix Slots. . ..o 38

5.9 Predicate Slotst 41

Appendix A FAQ.......... 42

A.1 Can I control how the menu buffer is displayed?................ 42
A.2 How can I copy text from the menu buffer?..................... 42
A.3 How can I autoload prefix and suffix commands? 42
A.4 How does Transient compare to prefix keys and universal
ATGUINEIIEST . . oottt ettt e e 42
A.5 How does Transient compare to Magit-Popup and Hydra? 42
A.6 Why does g not quit popups anymore?......................... 42
Appendix B Keystroke Index 44

Appendix C Command and Function Index.... 45
Appendix D Variable Index 46
Appendix E Concept Index 47

Appendix F GNU General Public License..... 48

ii

1 Introduction

Transient is the library used to implement the keyboard-driven menus in Magit. It is
distributed as a separate package, so that it can be used to implement similar menus in
other packages.

This manual can be bit hard to digest when getting started. A useful resource to
get over that hurdle is Psionic K’s interactive tutorial, available at https://github.com/
positron-solutions/transient-showcase.

Some things that Transient can do

e Display current state of arguments

e Display and manage lifecycle of modal bindings

e Contextual user interface

e Flow control for wizard-like composition of interactive forms
e History & persistence

e Rendering arguments for controlling CLI programs

Complexity in CLI programs

Complexity tends to grow with time. How do you manage the complexity of commands?
Consider the humble shell command ‘1s’. It now has over fifty command line options. Some
of these are boolean flags (‘1s -1’). Some take arguments (‘ls --sort=s’). Some have no
effect unless paired with other flags (‘ls -1h’). Some are mutually exclusive. Some shell
commands even have so many options that they introduce subcommands (‘git branch’,
‘git commit’), each with their own rich set of options (‘git branch -f’).

Using Transient for composing interactive commands

What about Emacs commands used interactively? How do these handle options? One
solution is to make many versions of the same command, so you don’t need to! Consider:
‘delete-other-windows’ vs. ‘delete-other-windows-vertically’ (among many similar
examples).

Some Emacs commands will simply prompt you for the next "argument" (‘M-x
switch-to-buffer’). Another common solution is to use prefix arguments which
usually start with ‘C-u’. Sometimes these are sensibly numerical in nature (‘C-u 4 M-x
forward-paragraph’ to move forward 4 paragraphs). But sometimes they function instead
as boolean "switches" (‘C-u C-SPACE’ to jump to the last mark instead of just setting it,
‘C-u C-u C-SPACE’ to unconditionally set the mark). Since there aren’t many standards
for the use of prefix options, you have to read the command’s documentation to find out
what the possibilities are.

But when an Emacs command grows to have a truly large set of options and arguments,
with dependencies between them, lots of option values, etc., these simple approaches just
don’t scale. Transient is designed to solve this issue. Think of it as the humble prefix argu-
ment ‘C-u’, raised to the power of 10. Like ‘C-u’, it is key driven. Like the shell, it supports
boolean "flag" options, options that take arguments, and even "sub-commands", with their

https://github.com/positron-solutions/transient-showcase
https://github.com/positron-solutions/transient-showcase

Chapter 1: Introduction 2

own options. But instead of searching through a man page or command documentation,
well-designed transients guide their users to the relevant set of options (and even their
possible values!) directly, taking into account any important pre-existing Emacs settings.
And while for shell commands like ‘1s’, there is only one way to "execute" (hit ‘Return’!),
transients can "execute" using multiple different keys tied to one of many self-documenting
actions (imagine having 5 different colored return keys on your keyboard!). Transients make
navigating and setting large, complex groups of command options and arguments easy. Fun
even. Once you've tried it, it’s hard to go back to the ‘C-u what can I do here again?’
way.

2 Usage

2.1 Invoking Transients

A transient prefix command is invoked like any other command by pressing the key that is
bound to that command. The main difference to other commands is that a transient prefix
command activates a transient keymap, which temporarily binds the transient’s infix and
suffix commands, and that those bindings are shown in menu buffer, which is displayed in
a new window, until the menu is exited. Bindings from other keymaps may, or may not, be
disabled while the transient state is in effect.

There are two kinds of commands that are available after invoking a transient prefix
command; infix and suffix commands. Infix commands set some value (which is then shown
in the menu buffer), without leaving the transient. Suffix commands, on the other hand,
usually quit the transient and they may use the values set by the infix commands, i.e., the
infix arguments.

Instead of setting arguments to be used by a suffix command, infix commands may also
set some value by side-effect, e.g., by setting the value of some variable.

2.2 Aborting and Resuming Transients

To quit the transient without invoking a suffix command press C-g.

Key bindings in transient keymaps may be longer than a single event. After pressing
a valid prefix key, all commands whose bindings do not begin with that prefix key are
temporarily unavailable and grayed out. To abort the prefix key press C-g (which in this
case only quits the prefix key, but not the complete transient).

A transient prefix command can be bound as a suffix of another transient. Invoking such
a suffix replaces the current transient state with a new transient state, i.e., the available
bindings change and the information displayed in the menu buffer is updated accordingly.
Pressing C-g while a nested transient is active only quits the innermost transient, causing
a return to the previous transient.

C-q or C-z on the other hand always exits all transients. If you use the latter, then you
can later resume the stack of transients using M-x transient-resume.

C-g (transient-quit-seq)

C-g (transient-quit-one)
This key quits the currently active incomplete key sequence, if any, or else
the current transient. When quitting the current transient, it returns to the
previous transient, if any.

Transient’s predecessor bound q instead of C-g to the quit command. To learn how to
get that binding back see transient-bind-q-to-quit’s documentation string.

C-q (transient-quit-all)
This command quits the currently active incomplete key sequence, if any, and
all transients, including the active transient and all suspended transients, if any.

C-z (transient-suspend)
Like transient-quit-all, this command quits an incomplete key sequence, if
any, and all transients. Additionally, it saves the stack of transients so that it

Chapter 2: Usage 4

can easily be resumed (which is particularly useful if you quickly need to do
“something else” and the stack is deeper than a single transient, and/or you
have already changed the values of some infix arguments).

Note that only a single stack of transients can be saved at a time. If another
stack is already saved, then saving a new stack discards the previous stack.

M-x transient-resume
This command resumes the previously suspended stack of transients, if any.

2.3 Common Suffix Commands

A few shared suffix commands are available in all transients. These suffix commands are
not shown permanently in every menu by default. Most of these commands share a common
prefix key and pressing that key causes the common commands to be temporarily shown in
the active menu.

transient-show-common-commands [User Option]
This option controls whether shared suffix commands are permanently shown along-
side the menu-specific infix and suffix commands. By default, the shared commands
are not permanently shown to avoid wasting precious space and overwhelming the
user with too many choices.

If you prefer to always see these commands, then set this option to a non-nil value.
Alternatively the value can be toggled for the current Emacs session only, using
transient-toggle-common, described below.

transient-common-command-prefix [User Option]
This option specifies the prefix key used in all transient menus to invoke most of
the shared commands, which are available in all transient menus. By default these
bindings are only shown after pressing that prefix key and before following that up
with a valid key binding (but see the previous option).

For historic reasons C-x is used by default, but users are encouraged to pick another
key, preferably one that is not commonly used in Emacs but is still convenient to
them.

Usually, while a transient menu is active, the user cannot invoke commands that are
not bound in the menu itself. For those menus it does not matter, if C-x or another
commonly used prefix key is used for common menu commands. However, certain
other, newer menus do not suppress key bindings established outside the menu itself,
and in those cases a binding for a common menu command could shadow an external
binding. For example, C-x C-s could not be used to invoke save-buffer, if that
binding is shadowed by the menu binding for transient-save.

Which key is most suitable depends on the user’s preferences, but good choices may
include function keys and C-z (for many keyboard layouts z is right next to x, and
invoking suspend-frame, while a transient menu is active, would not be a good idea
anyway).

C-x t (transient-toggle-common)
This command toggles whether the generic commands, that are common to all
transients, are permanently displayed or only after typing the incomplete prefix
key sequence. This only affects the current Emacs session.

Chapter 2: Usage 5

The other common commands are described in either the previous or in one of the
following sections.

2.4 Saving Values

After setting the infix arguments in a transient, the user can save those arguments for future
invocations.

Most transients will start out with the saved arguments when they are invoked. There
are a few exceptions, though. Some transients are designed so that the value that they use
is stored externally as the buffer-local value of some variable. Invoking such a transient
again uses the buffer-local value.!

If the user does not save the value and just exits using a regular suffix command, then
the value is merely saved to the transient’s history. That value won’t be used when the
transient is next invoked, but it is easily accessible (see Section 2.5 [Using History], page 5).

Option transient-common-command-prefix controls the prefix key used in the following
bindings. For simplicity’s sake the default, C-x, is shown below.

C-x s (transient-set)
This command saves the value of the active transient for this Emacs session.

C-x C-s (transient-save)
This command saves the value of the active transient persistently across Emacs
sessions.

C-x C-k (transient-reset)
This command clears the set and saved values of the active transient.

transient-values-file [User Option]
This option names the file that is used to persist the values of transients between
Emacs sessions.

2.5 Using History

Every time the user invokes a suffix command the transient’s current value is saved to its
history. These values can be cycled through, the same way one can cycle through the history
of commands that read user-input in the minibuffer.

Option transient-common-command-prefix controls the prefix key used in the following
bindings. For simplicity’s sake the default, C-x, is shown below.
C-M-p (transient-history-prev)
C-xp This command switches to the previous value used for the active transient.
C-M-n (transient-history-next)
C-xn This command switches to the next value used for the active transient.

In addition to the transient-wide history, infixes can have their own history. When
an infix reads user-input using the minibuffer, the user can use the regular minibuffer

! magit-diff and magit-log are two prominent examples, and their handling of buffer-local values is
actually a bit more complicated than outlined above and even customizable.

Chapter 2: Usage 6

history commands to cycle through previously used values. Usually the same keys as those
mentioned above are bound to those commands.

Authors of transients should arrange for different infix commands that read the same
kind of value to also use the same history key (see Section 5.8 [Suffix Slots], page 38).

Both kinds of history are saved to a file when Emacs is exited.

transient-save-history [User Option]
This option controls whether the history of transient commands is saved when exiting
Emacs.

transient-history-file [User Option]

This option names the file that is used to persist the history of transients and their
infixes between Emacs sessions.

transient-history-limit [User Option]
This option controls how many history elements are kept at the time the history is
saved in transient-history-file.

2.6 Getting Help for Suffix Commands

Transients can have many suffixes and infixes that the user might not be familiar with. To
make it trivial to get help for these, Transient provides access to the documentation directly
from the active transient.

C-h (transient-help)
This command enters help mode. When help mode is active, typing a key
shows information about the suffix command that the key normally is bound to
(instead of invoking it). Pressing C-h a second time shows information about
the prefix command.

After typing a key, the stack of transient states is suspended and information
about the suffix command is shown instead. Typing g in the help buffer buries
that buffer and resumes the transient state.

What sort of documentation is shown depends on how the transient was defined. For
infix commands that represent command-line arguments this ideally shows the appropriate
manpage. transient-help then tries to jump to the correct location within that. Info
manuals are also supported. The fallback is to show the command’s documentation string,
for non-infix suffixes this is usually appropriate.

2.7 Enabling and Disabling Suffixes

The user base of a package that uses transients can be very diverse. This is certainly the
case for Magit; some users have been using it and Git for a decade, while others are just
getting started now.

For that reason a mechanism is needed that authors can use to classify a transient’s
infixes and suffixes along the essentials. . .everything spectrum. We use the term levels to
describe that mechanism.

Chapter 2: Usage 7

Each suffix command is placed on a level and each transient has a level (called transient-
level), which controls which suffix commands are available. Integers between 1 and 7 (in-
clusive) are valid levels. For suffixes, 0 is also valid; it means that the suffix is not displayed
at any level.

The levels of individual transients and/or their individual suffixes can be changed inter-
actively, by invoking the menu and entering its “edit” mode using the command transient-
set-level, as described below.

The default level for both transients and their suffixes is 4. The transient-default-
level option only controls the default for transients. The default suffix level is always 4.
The authors of transients should place certain suffixes on a higher level, if they expect that
it won’t be of use to most users, and they should place very important suffixes on a lower
level, so that they remain available even if the user lowers the transient level.

transient-default-level [User Option]
This option controls which suffix levels are made available by default. It sets the
transient-level for transients for which the user has not set that individually.

transient-levels-file [User Option]
This option names the file that is used to persist the levels of transients and their
suffixes between Emacs sessions.

Option transient-common-command-prefix controls the prefix key used in the following
bindings. For simplicity’s sake the default, C-x, is shown below.

C-x 1 (transient-set-level)
This command enters edit mode. When edit mode is active, then all infixes
and suffixes that are currently usable are displayed along with their levels. The
colors of the levels indicate whether they are enabled or not. The level of the
transient is also displayed along with some usage information.

In edit mode, pressing the key that would usually invoke a certain suffix instead
prompts the user for the level that suffix should be placed on.

Help mode is available in edit mode.
To change the transient level press C-x 1 again.
To exit edit mode press C-g.

Note that edit mode does not display any suffixes that are not currently usable.
magit-rebase, for example, shows different suffixes depending on whether a
rebase is already in progress or not. The predicates also apply in edit mode.

Therefore, to control which suffixes are available given a certain state, you have
to make sure that that state is currently active.

C-x a (transient-toggle-level-limit)
This command toggle whether suffixes that are on levels higher than the level
specified by transient-default-level are temporarily available anyway.

transient-set-default-level suffix level [Function]
This function sets the default level of the suffix COMMAND to LEVEL.

If a suffix command appears in multiple menus, it may make sense to consistently
change its level in all those menus at once. For example, the --gpg-sign argument

Chapter 2: Usage 8

(which is implemented using the command magit:--gpg-sign), is bound in all of
Magit’s menu which create commits. Users who sometimes sign their commits would
want that argument to be available in all of these menus, while for users who never
sign it is just unnecessary noise in any menus.

To always make --gpg-sign available, use:
(transient-set-default-level 'magit:--gpg-sign 1)

To never make —-gpg-sign available, use:
(transient-set-default-level 'magit:--gpg-sign 0)

This sets the level in the suffix prototype object for this command. Commands
only have a suffix prototype if they were defined using one of transient-define-
argument, transient-define-infix and transient-define-suffix. For all other
commands this would signal an error. (This is one of the reasons why package authors
should use one of these functions to define shared suffix commands, and especially
shared arguments.)

If the user changes the level of a suffix in a particular menu, using C-x 1 as shown
above, then that obviously shadows the default.

It is also possible to set the level of a suffix binding in a particular menu, either
when defining the menu using transient-define-prefix, or later using transient-
insert-suffix. If such bindings specify a level, then that also overrides the default.
(Per-suffix default levels is a new feature, so you might encounter this quite often.)

2.8 Other Commands

When invoking a transient in a small frame, the transient window may not show the com-
plete buffer, making it necessary to scroll, using the following commands. These commands
are never shown in the transient window, and the key bindings are the same as for scroll-
up-command and scroll-down-command in other buffers.

transient-scroll-up arg [Command]|
This command scrolls text of transient’s menu window upward ARG lines. If ARG
is nil, then it scrolls near full screen. This is a wrapper around scroll-up-command

(which see).

transient-scroll-down arg [Command]|
This command scrolls text of transient’s menu window down ARG lines. If ARG is
nil, then it scrolls near full screen. This is a wrapper around scroll-down-command

(which see).

The following commands are not available by default. If you would like to use them for
all menus, bind them in transient-map.

transient-copy-menu-text [Command]
This command copies the contents of the menu buffer to the kill ring.

transient-toggle-docstrings [Command]
This command toggle between showing suffix descriptions in the menu (as usual) or
showing the first lines of the respective docstrings in their place. For commands that

Chapter 2: Usage 9

do not have a docstring, always display the suffix description. Because there likely
isn’t enough room to display multiple docstrings side-by-side, a single column is used
when displaying docstrings.

2.9 Configuration

More options are described in Section 2.3 [Common Suffix Commands], page 4, in Section 2.4
[Saving Values|, page 5, in Section 2.5 [Using History|, page 5, and in Section 2.7 [Enabling
and Disabling Suffixes]|, page 6.

Essential Options

Two more essential options are documented in Section 2.3 [Common Suffix Commands],
page 4.

transient-show-popup [User Option]
This option controls whether and when transient’s menu buffer is shown.

e If t (the default), then the buffer is shown as soon as a transient prefix command
is invoked.

e If nil, then the buffer is not shown unless the user explicitly requests it, by
pressing an incomplete prefix key sequence.

e If a number, then the a brief one-line summary is shown instead of the menu
buffer. If zero or negative, then not even that summary is shown; only the
pressed key itself is shown.

The buffer is shown once the user explicitly requests it by pressing an incomplete
prefix key sequence. Unless this is zero, the menu is shown after that many
seconds of inactivity (using the absolute value).

transient-show-during-minibuffer-read [User Option]
This option controls whether the transient menu continues to be displayed while the
minibuffer is used to read user input.

This is only relevant to commands that do not close the menu, such as commands
that set infix arguments. If a command exits the menu, and uses the minibuffer, then
the menu is always closed before the minibuffer is entered, irrespective of the value
of this option.

When nil (the default), hide the menu while the minibuffer is in use. When t,
keep showing the menu, but allow for the menu window to be resized, to ensure that
completion candidates can be displayed.

When fixed, keep showing the menu and prevent it from being resized, which may
make it impossible to display the completion candidates. If that ever happens for
you, consider using t or an integer, as described below.

If the value is fixed and the menu window uses the full height of its frame, then the
former is ignored and resizing is allowed anyway. This is necessary because individual
menus may use unusual display actions different from what transient-display-
buffer-action specifies (likely to display that menu in a side-window).

When using a third-party mode, which automatically resizes windows (e.g., by calling
balance-windows on post-command-hook), then fixed (or nil) is likely a better
choice than t.

Chapter 2: Usage 10

The value can also be an integer, in which case the behavior depends on whether at
least that many lines are left to display windows other than the menu window. If that
is the case, display the menu and preserve the size of that window. Otherwise, allow
resizing the menu window if the number is positive, or hide the menu if it is negative.

transient-read-with-initial-input [User Option]
This option controls whether the last history element is used as the initial minibuffer
input when reading the value of an infix argument from the user. If nil, there is
no initial input and the first element has to be accessed the same way as the older
elements.

transient-enable-popup-navigation [User Option]
This option controls whether navigation commands are enabled in transient’s menu
buffer. If the value is verbose (the default), brief documentation about the command
under point is additionally show in the echo area.

While a transient is active the menu buffer is not the current buffer, making it neces-
sary to use dedicated commands to act on that buffer itself. If this option is non-nil,
then the following features are available:

e UP moves the cursor to the previous suffix.
e DOWN moves the cursor to the next suffix.
e M-RET invokes the suffix the cursor is on.
e mouse-1 invokes the clicked on suffix.

e (C-s and C-r start isearch in the menu buffer.

By default M-RET is bound to transient-push-button, instead of RET, because if a
transient allows the invocation of non-suffixes, then it is likely, that you would want
RET to do what it would do if no transient were active."

transient-display-buffer-action [User Option]
This option specifies the action used to display the transient’s menu buffer. The
menu buffer is displayed in a window using (display-buffer BUFFER transient-
display-buffer-action).
The value of this option has the form (FUNCTION . ALIST), where FUNCTION is a
function or a list of functions. Each such function should accept two arguments: a
buffer to display and an alist of the same form as ALIST. See Section “Choosing
Window” in elisp, for details.
The default is:
(display-buffer-in-side-window

(side . bottom)

(dedicated . t)

(inhibit-same-window . t))
This displays the window at the bottom of the selected frame. For alternatives see
Section “Buffer Display Action Functions” in elisp, and Section “Buffer Display
Action Alists” in elisp.

When you switch to a different ACTION, you should keep the ALIST entries for
dedicated and inhibit-same-window in most cases. Do not drop them because you
are unsure whether they are needed; if you are unsure, then keep them.

Chapter 2: Usage 11

Note that the buffer that was current before the transient buffer is shown should
remain the current buffer. Many suffix commands act on the thing at point, if appro-
priate, and if the transient buffer became the current buffer, then that would change
what is at point. To that effect inhibit-same-window ensures that the selected
window is not used to show the transient buffer.

It may be possible to display the window in another frame, but whether that works
in practice depends on the window-manager. If the window manager selects the new
window (Emacs frame), then that unfortunately changes which buffer is current.

If you change the value of this option, then you might also want to change the value
of transient-mode-line-format.

This user option may be overridden if :display-action is passed when creating a
new prefix with transient-define-prefix.

Accessibility Options

transient-force-single-column [User Option]
This option controls whether the use of a single column to display suffixes is enforced.
This might be useful for users with low vision who use large text and might otherwise
have to scroll in two dimensions.

Auxiliary Options

transient-mode-line-format [User Option]
This option controls whether transient’s menu buffer has a mode-line, separator line,
or neither.

If nil, then the buffer has no mode-line. If the buffer is not displayed right above the
echo area, then this probably is not a good value.

If 1ine (the default) or a natural number, then the buffer has no mode-line, but a
line is drawn in its place. If a number is used, that specifies the thickness of the line.
On termcap frames we cannot draw lines, so there 1ine and numbers are synonyms
for nil.

The color of the line is used to indicate if non-suffixes are allowed and whether they
exit the transient. The foreground color of transient-key-noop (if non-suffixes
are disallowed), transient-key-stay (if allowed and transient stays active), or
transient-key-exit (if allowed and they exit the transient) is used to draw the
line.

This user option may be overridden if :mode-line-format is passed when creating a
new prefix with transient-define-prefix.

Otherwise this can be any mode-line format. See Section “Mode Line Format” in
elisp, for details.

transient-semantic-coloring [User Option]
This option controls whether colors are used to indicate the transient behavior of
commands.

If non-nil, then the key binding of each suffix is colorized to indicate whether it exits
the transient state or not. The color of the prefix is indicated using the line that is
drawn when the value of transient-mode-line-format is line.

Chapter 2: Usage 12

transient-highlight-mismatched-keys [User Option]
This option controls whether key bindings of infix commands that do not match the
respective command-line argument should be highlighted. For other infix commands
this option has no effect.

When this option is non-nil, the key binding for an infix argument is highlighted
when only a long argument (e.g., ——verbose) is specified but no shorthand (e.g., -v).
In the rare case that a shorthand is specified but the key binding does not match,
then it is highlighted differently.

Highlighting mismatched key bindings is useful when learning the arguments of the
underlying command-line tool; you wouldn’t want to learn any short-hands that do
not actually exist.

The highlighting is done using one of the faces transient-mismatched-key and
transient-nonstandard-key.

transient-substitute-key-function [User Option]
This function is used to modify key bindings. If the value of this option is nil (the
default), then no substitution is performed.

This function is called with one argument, the prefix object, and must return a key
binding description, either the existing key description it finds in the key slot, or
the key description that replaces the prefix key. It could be used to make other
substitutions, but that is discouraged.

For example, = is hard to reach using my custom keyboard layout, so I substitute (
for that, which is easy to reach using a layout optimized for lisp.

(setq transient-substitute-key-function
(lambda (obj)
(let ((key (oref obj key)))
(if (string-match "\\"\\(=\\) [a-zA-Z]" key)
(replace-match "(" t t key 1)
key))))

transient-align-variable-pitch [User Option]
This option controls whether columns are aligned pixel-wise in the menu buffer.

If this is non-nil, then columns are aligned pixel-wise to support variable-pitch fonts.
Keys are not aligned, so you should use a fixed-pitch font for the transient-key
face. Other key faces inherit from that face unless a theme is used that breaks that
relationship.

This option is intended for users who use a variable-pitch font for the default face.

transient-force-fixed-pitch [User Option]
This option controls whether to force the use of a monospaced font in menu buffer.
Even if you use a proportional font for the default face, you might still want to use
a monospaced font in the menu buffer. Setting this option to t causes default to be
remapped to fixed-pitch in that buffer.

Chapter 2: Usage 13

Developer Options

These options are mainly intended for developers.

transient-detect-key-conflicts [User Option]
This option controls whether key binding conflicts should be detected at the time the
transient is invoked. If so, this results in an error, which prevents the transient from
being used. Because of that, conflicts are ignored by default.

Conflicts cannot be determined earlier, i.e., when the transient is being defined and
when new suffixes are being added, because at that time there can be false-positives.
It is actually valid for multiple suffixes to share a common key binding, provided the
predicates of those suffixes prevent that more than one of them is enabled at a time.

transient-error-on-insert-failure [User Option]
This option controls whether to signal an error when transient-insert-suffix or
transient-append-suffix failed to insert a suffix into an existing prefix. By default
a warning is shown instead.

transient-highlight-higher-levels [User Option]
This option controls whether suffixes that would not be available by default are high-
lighted.

When non-nil then the descriptions of suffixes are highlighted if their level is above
4, the default of transient-default-level. Assuming you have set that variable to
7, this highlights all suffixes that won’t be available to users without them making
the same customization.

Hook Variables

transient-exit-hook [Variable]
This hook is run after a transient menu is exited, even if another transient menu
becomes active at the same time.

transient-post-exit-hook [Variable]
This hook is run after a transient menu is exited, provided no other transient menu
becomes active at the same time.

transient-setup-buffer-hook [Variable]
This hook is run when the transient buffer is being setup. That buffer is current and
empty when this hook is runs.

14

3 Modifying Existing Transients

To an extent, transients can be customized interactively, see Section 2.7 [Enabling and
Disabling Suffixes|, page 6. This section explains how existing transients can be further
modified non-interactively. Let’s begin with an example:
(transient-append-suffix 'magit-patch-apply "-3"
"("-R" "Apply in reverse" "--reverse"))

This inserts a new infix argument to toggle the —-reverse argument after the infix
argument that is bound to -3 in magit-patch-apply.

The following functions share a few arguments:
e PREFIX is a transient prefix command, a symbol.

PREFIX may also by a symbol identifying a separately defined group, which can be
included in multiple prefixes. See TODO.

e SUFFIX is a transient infix or suffix specification in the same form as expected by
transient-define-prefix. Note that an infix is a special kind of suffix. Depending
on context “suffixes” means “suffixes (including infixes)” or “non-infix suffixes”. Here
it means the former. See [Suffix Specifications], page 21.

SUFFIX may also be a group in the same form as expected by transient-define-
prefix. See [Group Specifications|, page 18.

e LOC is a key description (a string as returned by key-description and understood
by kbd), a command, a symbol identifying an included group, or a vector specifying
coordinates. For example, [1 0 -1] identifies the last suffix (-1) of the first subgroup
(0) of the second group (1).

If LOC is a vector, then it can be used to identify a group, not just an individual suffix
command. The last element in a vector may also be a symbol or key, in which case the
preceding elements must match a group and the last element is looked up within that
group.

The function transient-get-suffix can be useful to determine whether a certain
coordinate vector identifies the suffix or group that you expect it to identify. In hairy
cases it may be necessary to look at the internal layout representation, which you can
access using the function transient--get-layout.

These functions operate on the information stored in the transient--layout property
of the PREFIX symbol. Elements in that tree are not objects but have the form (CLASS
PLIST) for suffixes and [CLASS PLIST CHILDREN] for groups. At the root of the tree is
an element [N Nil CHILDREN], where N is the version of the layout format, currently and
hopefully for a long time 2. While that element looks like a group vector, that element does
not count when identifying a group using a coordinate vector, i.e., [0] is its first child, not
the root element itself.

transient-insert-suffix prefix loc suffix &optional keep-other [Function]

transient-append-suffix prefix loc suffix &optional keep-other [Function]
These functions insert the suffix or group SUFFIX into PREFIX before or after LOC.
Conceptually adding a binding to a transient prefix is similar to adding a binding
to a keymap, but this is complicated by the fact that multiple suffix commands can

Chapter 3: Modifying Existing Transients 15

be bound to the same key, provided they are never active at the same time, see
Section 5.9 [Predicate Slots|, page 41.

Unfortunately both false-positives and false-negatives are possible. To deal with the
former, use non-nil KEEP-OTHER. The symbol always prevents the removal of a
false-positive, in some cases where other non-nil values would fail. To deal with
false-negatives remove the conflicting binding separately, using transient-remove-

suffix.

transient-replace-suffix prefix loc suffix [Function]
This function replaces the suffix or group at LOC in PREFIX with suffix or group
SUFFIX.

transient-remove-suffix prefix loc [Function]

This function removes the suffix or group at LOC in PREFIX.

transient-get-suffix prefix loc [Function]
This function returns the suffix or group at LOC in PREFIX. The returned value
has the form mentioned above.

transient-suffix-put prefix loc prop value [Function]
This function edits the suffix or group at LOC in PREFIX, by setting the PROP of
its plist to VALUE.

Some prefix commands share suffixes, which are separately and then included in each
prefix when it is defined. The inclusion is done by reference, the included suffix groups are
not inlined by default. So if you change, for example, the key binding for an argument in
magit-diff (d) the same change also applies to magit-diff-refresh (D). In the rare case
that this is not desirable use transient-inline-group before making changes to included
suffixes.

transient-inline-group PREFIX GROUP [Function]
This function inlines the included GROUP into PREFIX, by replacing the symbol
GROUP with its expanded layout in the layout of PREFIX.

Most of these functions do not signal an error if they cannot perform the requested
modification. The functions that insert new suffixes show a warning if LOC cannot be
found in PREFIX without signaling an error. The reason for doing it like this is that
establishing a key binding (and that is what we essentially are trying to do here) should not
prevent the rest of the configuration from loading. Among these functions only transient-
get-suffix and transient-suffix-put signal an error by default. If you really want the
insert functions to also signal an error, set transient-error-on-insert-failure to t.

16

4 Defining New Commands

4.1 Technical Introduction

Taking inspiration from prefix keys and prefix arguments, Transient implements a similar
abstraction involving a prefix command, infix arguments and suffix commands.

When the user calls a transient prefix command, a transient (temporary) keymap is
activated, which binds the transient’s infix and suffix commands, and functions that control
the transient state are added to pre-command-hook and post-command-hook. The available
suffix and infix commands and their state are shown in a menu buffer until the transient
state is exited by invoking a suffix command.

Calling an infix command causes its value to be changed. How that is done depends on
the type of the infix command. The simplest case is an infix command that represents a
command-line argument that does not take a value. Invoking such an infix command causes
the switch to be toggled on or off. More complex infix commands may read a value from
the user, using the minibuffer.

Calling a suffix command usually causes the transient to be exited; the transient keymaps
and hook functions are removed, the menu buffer no longer shows information about the
(no longer bound) suffix commands, the values of some public global variables are set, while
some internal global variables are unset, and finally the command is actually called. Suffix
commands can also be configured to not exit the transient.

A suffix command can, but does not have to, use the infix arguments in much the same
way any command can choose to use or ignore the prefix arguments. For a suffix command
that was invoked from a transient, the variable transient-current-suffixes and the
function transient-args serve about the same purpose as the variables prefix-arg and
current-prefix-arg do for any command that was called after the prefix arguments have
been set using a command such as universal-argument.

Transient can be used to implement simple “command dispatchers”. The main benefit
then is that the user can see all the available commands in a temporarily shown buffer,
which can be thought of as a “menu”. That is useful by itself because it frees the user
from having to remember all the keys that are valid after a certain prefix key or command.
Magit’s magit-dispatch (on C-x M-g) command is an example of using Transient to merely
implement a command dispatcher.

In addition to that, Transient also allows users to interactively pass arguments to com-
mands. These arguments can be much more complex than what is reasonable when using
prefix arguments. There is a limit to how many aspects of a command can be controlled
using prefix arguments. Furthermore, what a certain prefix argument means for different
commands can be completely different, and users have to read documentation to learn and
then commit to memory what a certain prefix argument means to a certain command.

Transient suffix commands, on the other hand, can accept dozens of different arguments
without the user having to remember anything. When using Transient, one can call a
command with arguments that are just as complex as when calling the same function non-
interactively from Lisp.

Invoking a transient suffix command with arguments is similar to invoking a command
in a shell with command-line completion and history enabled. One benefit of the Transient

Chapter 4: Defining New Commands 17

interface is that it remembers history not only on a global level (“this command was invoked
using these arguments, and previously it was invoked using those other arguments”), but
also remembers the values of individual arguments independently. See Section 2.5 [Using
History], page 5.

After a transient prefix command is invoked, C-h KEY can be used to show the documen-
tation for the infix or suffix command that KEY is bound to (see Section 2.6 [Getting Help
for Suffix Commands|, page 6), and infixes and suffixes can be removed from the transient
using C-x 1 KEY. Infixes and suffixes that are disabled by default can be enabled the same
way. See Section 2.7 [Enabling and Disabling Suffixes|, page 6.

Transient ships with support for a few different types of specialized infix commands.
A command that sets a command line option, for example, has different needs than a
command that merely toggles a boolean flag. Additionally, Transient provides abstractions
for defining new types, which the author of Transient did not anticipate (or didn’t get
around to implementing yet).

Note that suffix commands also support regular prefix arguments. A suffix command
may even be called with both infix and prefix arguments at the same time. If you invoke a
command as a suffix of a transient prefix command, but also want to pass prefix arguments
to it, then first invoke the prefix command, and only after doing that invoke the prefix ar-
guments, before finally invoking the suffix command. If you instead began by providing the
prefix arguments, then those would apply to the prefix command, not the suffix command.
Likewise, if you want to change infix arguments before invoking a suffix command with
prefix arguments, then change the infix arguments before invoking the prefix arguments.
In other words, regular prefix arguments always apply to the next command, and since
transient prefix, infix and suffix commands are just regular commands, the same applies
to them. (Regular prefix keys behave differently because they are not commands at all,
instead they are just incomplete key sequences, and those cannot be interrupted with prefix
commands.)

4.2 Defining Transients

A transient consists of a prefix command and at least one suffix command, though usually
a transient has several infix and suffix commands. The below macro defines the transient
prefix command and binds the transient’s infix and suffix commands. In other words, it
defines the complete transient, not just the transient prefix command that is used to invoke
that transient.

transient-define-prefix name arglist [docstring] [keyword value]... [Macro]
group. . . [body. . .]

This macro defines NAME as a transient prefix command and binds the transient’s
infix and suffix commands.

ARGLIST are the arguments that the prefix command takes. DOCSTRING is the
documentation string and is optional.

These arguments can optionally be followed by keyword-value pairs. Each key has
to be a keyword symbol, either :class or a keyword argument supported by the
constructor of that class. The transient-prefix class is used if the class is not
specified explicitly.

Chapter 4: Defining New Commands 18

GROUPs add key bindings for infix and suffix commands and specify how these
bindings are presented in the menu buffer. At least one GROUP has to be specified.
See Section 4.3 [Binding Suffix and Infix Commands], page 18.

The BODY is optional. If it is omitted, then ARGLIST is ignored and the function
definition becomes:

(lambda O
(interactive)
(transient-setup 'NAME))

If BODY is specified, then it must begin with an interactive form that matches
ARGLIST, and it must call transient-setup. It may, however, call that function
only when some condition is satisfied.

All transients have a (possibly nil) value, which is exported when suffix commands
are called, so that they can consume that value. For some transients it might be
necessary to have a sort of secondary value, called a “scope”. Such a scope would
usually be set in the command’s interactive form and has to be passed to the setup
function:

(transient-setup 'NAME nil nil :scope SCOPE)

For example, the scope of the magit-branch-configure transient is the branch whose
variables are being configured.

Sometimes multiple prefix commands share a common set of suffixes. For example, while
magit-diff (d) and magit-diff-refresh (D) offer different suffixes to actually create or
update a diff, they both offer the same infix arguments to control how that diff is formatted.
Such shared groups should be defined using transient-define-group and then included
in multiple prefixes, by using the symbol that identifies the group in the prefix definition,
in a location where you would otherwise use a group vector. If an included group is placed
at the top-level of a prefix (as opposed of inside inside a vector as a child group), then the
symbol should be quoted.

transient-define-group name group. . . [Macro]
This macro define one or more groups and stores them in symbol NAME. GROUPs
have the same form as for transient-define-prefix.

4.3 Binding Suffix and Infix Commands

The macro transient-define-prefix is used to define a transient. This defines the actual
transient prefix command (see Section 4.2 [Defining Transients], page 17) and adds the
transient’s infix and suffix bindings, as described below.

Users and third-party packages can add additional bindings using functions such as
transient-insert-suffix (see Chapter 3 [Modifying Existing Transients|, page 14).
These functions take a “suffix specification” as one of their arguments, which has the same
form as the specifications used in transient-define-prefix.

4.3.1 Group Specifications

The suffix and infix commands of a transient are organized in groups. The grouping controls
how the descriptions of the suffixes are outlined visually but also makes it possible to set
certain properties for a set of suffixes.

Chapter 4: Defining New Commands 19

Several group classes exist, some of which organize suffixes in subgroups. In most cases
the class does not have to be specified explicitly, but see Section 5.1 [Group Classes], page 30.

Groups are specified in the call to transient-define-prefix, using vectors. Because
groups are represented using vectors, we cannot use square brackets to indicate an optional
element and instead use curly brackets to do the latter.

Group specifications then have this form:
[{LEVEL} {DESCRIPTION} {KEYWORD VALUE}... ELEMENT...]

The LEVEL is optional and defaults to 4. See Section 2.7 [Enabling and Disabling
Suffixes|, page 6.

The DESCRIPTION is optional. If present, it is used as the heading of the group.

The KEYWORD-VALUE pairs are optional. Each keyword has to be a keyword symbol,
either :class or a keyword argument supported by the constructor of that class.

e One of these keywords, :description, is equivalent to specifying DESCRIPTION at
the very beginning of the vector. The recommendation is to use :description if some
other keyword is also used, for consistency, or DESCRIPTION otherwise, because it
looks better.

e Likewise :1level is equivalent to LEVEL.

e Other important keywords include the :if... and :inapt-if... keywords. These
keywords control whether the group is available in a certain situation.

For example, one group of the magit-rebase transient uses :if magit-rebase-in-
progress-p, which contains the suffixes that are useful while rebase is already in
progress; and another that uses :if-not magit-rebase-in-progress-p, which con-
tains the suffixes that initiate a rebase.

These predicates can also be used on individual suffixes and are only documented once,
see Section 5.9 [Predicate Slots], page 41.

e The value of :hide, if non-nil, is a predicate that controls whether the group is hidden
by default. The key bindings for suffixes of a hidden group should all use the same
prefix key. Pressing that prefix key should temporarily show the group and its suffixes,
which assumes that a predicate like this is used:

(lambda (O
(eq (car transient--redisplay-key)
?\C-c)) ; the prefix key shared by all bindings

e The value of :setup-children, if non-nil, is a function that takes one argument, a
potentially list of children, and must return a list of children or an empty list. This
can either be used to somehow transform the group’s children that were defined the
normal way, or to dynamically create the children from scratch.

The returned children must have the same form as stored in the prefix’s
transient--layout property, but it is often more convenient to use the same form as
understood by transient-define-prefix, described below. If you use the latter ap-
proach, you can use the transient-parse-suffixes and transient-parse-suffix
functions to transform them from the convenient to the expected form. Depending
on the used group class, transient-parse-suffixes’s SUFFIXES must be a list of
group vectors (for transient-columns) or a list of suffix lists (for all other group
classes).

Chapter 4: Defining New Commands 20

If you explicitly specify children and then transform them using : setup-children, then
the class of the group is determined as usual, based on explicitly specified children.

If you do not explicitly specify children and thus rely solely on :setup-children, then
you must specify the class using :class. For backward compatibility, if you fail to do
S0, transient-column is used and a warning is displayed. This warning will eventually
be replaced with an error.

(transient-define-prefix my-finder-by-keyword ()
"Select a keyword and list matching packages."
;5 The real “finder-by-keyword' is more convenient
;3 of course, but that is not the point here.
[:class transient-columns
:setup-children
(lambda ()
(transient-parse-suffixes
'my-finder-by-keyword
(let ((char (1- 7A)))

(mapcar ; a list ...
(lambda (partition)
(vconcat ; of group vectors ...

(mapcar (lambda (elt)
(let ((keyword (symbol-name (car elt))))
; ... where each suffix is a list
(list (format "Jc" (cl-incf char))
keyword
(lambda (O
(interactive)
(finder-list-matches keyword)))))
partition)))
(seq-partition finder-known-keywords 7)))))])

e The boolean :pad-keys argument controls whether keys of all suffixes contained in a
group are right padded, effectively aligning the descriptions.

e If a keyword argument accepts a function as value, you an use a lambda expression. As
a special case, the ## macro (which returns a lambda expression and is implemented in
the 11ama package) is also supported. Inside group specifications, the use of ## is not
supported anywhere but directly following a keyword symbol.

The ELEMENTS are either all subgroups, or all suffixes and strings. (At least currently
no group type exists that would allow mixing subgroups with commands at the same level,
though in principle there is nothing that prevents that.)

If the ELEMENTS are not subgroups, then they can be a mixture of lists, which specify
commands, and strings. Strings are inserted verbatim into the buffer. The empty string
can be used to insert gaps between suffixes, which is particularly useful if the suffixes are
outlined as a table.

Inside group specifications, including inside contained suffix specifications, nothing has

to be quoted and quoting anyway is invalid. The value following a keyword, can be explicitly
unquoted using ,. This feature is experimental and should be avoided.

Chapter 4: Defining New Commands 21

The form of suffix specifications is documented in the next node.

4.3.2 Suffix Specifications

A transient’s suffix and infix commands are bound when the transient prefix command is
defined using transient-define-prefix, see Section 4.2 [Defining Transients|, page 17.
The commands are organized into groups, see [Group Specifications], page 18. Here we
describe the form used to bind an individual suffix command.

The same form is also used when later binding additional commands using functions such
as transient-insert-suffix, see Chapter 3 [Modifying Existing Transients|, page 14.

Note that an infix is a special kind of suffix. Depending on context “suffixes” means
“suffixes (including infixes)” or “non-infix suffixes”. Here it means the former.

Suffix specifications have this form:
([LEVEL] [KEY [DESCRIPTION]] COMMAND|ARGUMENT [KEYWORD VALUE]...)

LEVEL, KEY and DESCRIPTION can also be specified using the KEYWORDs :1evel,
:key and :description. If the object that is associated with COMMAND sets these
properties, then they do not have to be specified here. You can however specify them here
anyway, possibly overriding the object’s values just for the binding inside this transient.

e LEVEL is the suffix level, an integer between 1 and 7. See Section 2.7 [Enabling and
Disabling Suffixes|, page 6.

e KEY is the key binding, a string in the format returned by describe-key and under-
stood by kbd.

That format is more permissive than the one accepted by key-valid-p. Being more
permissive makes it possible, for example, to write the key binding, which toggles the -a
command line argument, as "-a", instead of having to write "- a". Likewise additional
spaces can be added, which is not removed when displaying the binding in the menu,
which is useful for alignment purposes.

e DESCRIPTION is the description, either a string or a function that takes zero or one
arguments (the suffix object) and returns a string. The function should be a lambda
expression to avoid ambiguity. In some cases a symbol that is bound as a function
would also work but to be safe you should use :description in that case.

The next element is either a command or an argument. This is the only argument that
is mandatory in all cases.

e COMMAND should be a symbol that is bound as a function, which has to be defined
or at least autoloaded as a command by the time the containing prefix command is
invoked.

Any command will do; it does not need to have an object associated with it (as would
be the case if transient-define-suffix or transient-define-infix were used to
define it).

COMMAND can also be a lambda expression.
As mentioned above, the object that is associated with a command can be used to set
the default for certain values that otherwise have to be set in the suffix specification.

Therefore if there is no object, then you have to make sure to specify the KEY and
the DESCRIPTION.

Chapter 4: Defining New Commands 22

As a special case, if you want to add a command that might be neither defined nor
autoloaded, you can use a workaround like:

(transient-insert-suffix 'some-prefix "k"
'("!" "Ceci n'est pas une commande" no-command
:if (lambda () (featurep 'no-library))))

Instead of featurep you could also use require with a non-nil value for NOERROR.

e The mandatory argument can also be a command-line argument, a string. In that case
an anonymous command is defined and bound.

Instead of a string, this can also be a list of two strings, in which case the first string
is used as the short argument (which can also be specified using :shortarg) and the
second as the long argument (which can also be specified using :argument).

Only the long argument is displayed in the menu buffer. See transient-detect-key-
conflicts for how the short argument may be used.

Unless the class is specified explicitly, the appropriate class is guessed based on the long
argument. If the argument ends with ‘=’ (e.g., ‘-~—format=") then transient-option
is used, otherwise transient-switch.

Finally, details can be specified using optional KEYWORD-VALUE pairs. Each key-
word has to be a keyword symbol, either :class or a keyword argument supported by the
constructor of that class. See Section 5.8 [Suffix Slots|, page 38.

If a keyword argument accepts a function as value, you an use a lambda expression. As
a special case, the ## macro (which returns a lambda expression and is implemented in the
1llama package) is also supported. Inside suffix bindings, the use of ## is not supported
anywhere but directly following a keyword symbol.

4.4 Defining Suffix and Infix Commands

Note that an infix is a special kind of suffix. Depending on context “suffixes” means “suffixes
(including infixes)” or “non-infix suffixes”.

transient-define-suffix name arglist [docstring] [keyword value]... [Macro]
body. ..

This macro defines NAME as a transient suffix command.

ARGLIST are the arguments that the command takes. DOCSTRING is the docu-
mentation string and is optional.

These arguments can optionally be followed by keyword-value pairs. Each keyword
has to be a keyword symbol, either :class or a keyword argument supported by
the constructor of that class. The transient-suffix class is used if the class is not
specified explicitly.

The BODY must begin with an interactive form that matches ARGLIST. The
infix arguments are usually accessed by using transient-args inside interactive.

transient-define-infix name arglist [docstring] [keyword value]. . . [Macro]
This macro defines NAME as a transient infix command.

ARGLIST is always ignored (but mandatory never-the-less) and reserved for future
use. DOCSTRING is the documentation string and is optional.

Chapter 4: Defining New Commands 23

At least one key-value pair is required. All transient infix commands are equal to each
other (but not eq). It is meaningless to define an infix command, without providing
at least one keyword argument (usually :argument or :variable, depending on the
class). The suffix class defaults to transient-switch and can be set using the :class
keyword.

The function definition is always:

(lambda ()
(interactive)
(let ((obj (transient-suffix-object)))
(transient-infix-set obj (transient-infix-read obj)))
(transient--show))

transient-infix-read and transient-infix-set are generic functions. Different
infix commands behave differently because the concrete methods are different for
different infix command classes. In rare cases the above command function might not
be suitable, even if you define your own infix command class. In that case you have
to use transient-define-suffix to define the infix command and use t as the value
of the :transient keyword.

transient-define-argument name arglist [docstring] [keyword [Macro]
value]. . .
This macro defines NAME as a transient infix command.

This is an alias for transient-define-infix. Only use this alias to define an infix
command that actually sets an infix argument. To define an infix command that, for
example, sets a variable, use transient-define-infix instead.

4.5 Using Infix Arguments

The functions and the variables described below allow suffix commands to access the value
of the transient from which they were invoked; which is the value of its infix arguments.
These variables are set when the user invokes a suffix command that exits the transient,
but before actually calling the command.

When returning to the command-loop after calling the suffix command, the arguments
are reset to nil (which causes the function to return nil too).

Like for Emacs’s prefix arguments, it is advisable, but not mandatory, to access the infix
arguments inside the command’s interactive form. The preferred way of doing that is to
call the transient-args function, which for infix arguments serves about the same purpose
as prefix-arg serves for prefix arguments.

transient-args prefix [Function]
This function returns the value of the transient prefix command PREFIX.

If the current command was invoked from the transient prefix command PREFIX,
then it returns the active infix arguments. If the current command was not invoked
from PREFIX, then it returns the set, saved or default value for PREFIX.

PREFIX may also be a list of prefixes. If no prefix is active, the fallback value of the
first of these prefixes is used.

Chapter 4: Defining New Commands 24

The generic function transient-prefix-value is used to determine the returned
value.

This function is intended to be used by suffix commands, whether they are invoked
from a menu or not. It is not intended to be used when setting up a menu and its
suffixes, in which case transient-get-value should be used.

transient-get-value [Function]
This function returns the value of the erant prefix.

This function is intended to be used when setting up a menu and its suffixes. It is
not intended to be used when a suffix command is invoked, whether from a menu or
not, in which case transient-args should be used. In other words, use this, e.g., in
a suffixes :if* or :inapt-if* predicate and :description function, but never in its
interactive form or function body.

transient-arg-value arg args [Function]
This function returns the value of ARG as it appears in ARGS.

For a switch a boolean is returned. For an option the value is returned as a string,
using the empty string for the empty value, or nil if the option does not appear in
ARGS.

transient-suffixes prefix [Function]
This function returns the suffixes of the transient prefix command PREFIX. This is a
list of objects. This function should only be used if you need the objects (as opposed
to just their values) and if the current command is not being invoked from PREFIX.

4.6 Using Prefix Scope

Some transients have a sort of secondary value, called a scope. A prefix’s scope can be
accessed using transient-scope; similar to how its value can be accessed using transient-
args.

transient-scope prefixes classes [Function]
This function returns the scope of the active or current transient prefix command.

If optional PREFIXES and CLASSES are both nil, return the scope of the prefix
currently being setup, making this variation useful, e.g., in :if* predicates. If no
prefix is being setup, but the current command was invoked from some prefix, then
return the scope of that.

If PREFIXES is non-nil, it must be a prefix command or a list of such commands.
If CLASSES is non-nil, it must be a prefix class or a list of such classes. When this
function is called from the body or the interactive form of a suffix command, PRE-
FIXES and/or CLASSES should be non-nil. If either is non-nil, try the following
in order:
e If the current suffix command was invoked from a prefix, which appears in PRE-
FIXES, return the scope of that prefix.
e If the current suffix command was invoked from a prefix, and its class derives
from one of the CLASSES, return the scope of that prefix.

e If a prefix is being setup and it appears in PREFIXES, return its scope.

Chapter 4: Defining New Commands 25

e If a prefix is being setup and its class derives from one of the CLASSES, return
its scope.

e Finally try to return the default scope of the first command in PREFIXES.
This only works if that slot is set in the respective class definition or using its
‘transient-init-scope’ method.

If no prefix matches, return nil.

4.7 Current Suffix Command

transient-suffix-object command [Function]
This function returns the object associated with the current suffix command.

Each suffix commands is associated with an object, which holds additional information
about the suffix, such as its value (in the case of an infix command, which is a kind
of suffix command).

This function is intended to be called by infix commands, which are usually aliases
of transient--default-infix-command, which is defined like this:

(defun transient--default-infix-command ()
(interactive)
(let ((obj (transient-suffix-object)))
(transient-infix-set obj (transient-infix-read obj)))
(transient--show))

(User input is read outside of interactive to prevent the command from being added
to command-history.)

Such commands need to be able to access their associated object to guide how
transient-infix-read reads the new value and to store the read value. Other
suffix commands (including non-infix commands) may also need the object to guide
their behavior.

This function attempts to return the object associated with the current suffix com-
mand even if the suffix command was not invoked from a transient. (For some suffix
command that is a valid thing to do, for others it is not.) In that case nil may be
returned, if the command was not defined using one of the macros intended to define
such commands.

The optional argument COMMAND is intended for internal use. If you are contem-
plating using it in your own code, then you should probably use this instead:

(get COMMAND 'transient--suffix)

transient-current-suffixes [Variable]
The suffixes of the transient from which this suffix command was invoked. This is a
list of objects. Usually it is sufficient to instead use the function transient-args,
which returns a list of values. In complex cases it might be necessary to use this
variable instead, i.e., if you need access to information beside the value.

Chapter 4: Defining New Commands 26

4.8 Current Prefix Command

transient-prefix-object [Function]
This function returns the current prefix as an object.

While a transient is being setup or refreshed (which involves preparing its suffixes)
the variable transient--prefix can be used to access the prefix object. Thus this
is what has to be used in suffix methods such as transient-format-description,
and in object-specific functions that are stored in suffix slots such as description.

When a suffix command is invoked (i.e., in its interactive form and function body)
then the variable transient-current-prefix has to be used instead.

Two distinct variables are needed, because any prefix may itself be used as a suffix
of another prefix, and such sub-prefixes have to be able to tell themselves apart from
the prefix they were invoked from.

Regular suffix commands, which are not prefixes, do not have to concern themselves
with this distinction, so they can use this function instead. In the context of a plain
suffix, it always returns the value of the appropriate variable.

transient-current-prefix [Variable]
The transient from which this suffix command was invoked. The value is a transient-
prefix object, which holds information associated with the transient prefix command.

transient-current-command [Variable]
The transient from which this suffix command was invoked. The value is a symbol,
the transient prefix command.

transient-active-prefix &optional prefixes [Function]
This function returns the active transient object. It returns nil if there is no ac-
tive transient, if the transient buffer isn’t shown, and while the active transient is
suspended (e.g., while the minibuffer is in use).

Unlike transient-current-prefix, which is only ever non-nil in code that is run
directly by a command that is invoked while a transient is current, this function is also
suitable for use in asynchronous code, such as timers and callbacks (this function’s
main use-case).

If optional PREFIXES is non-nil, it must be a prefix command symbol or a list of
symbols, in which case the active transient object is only returned if it matches one
of the PREFIXES.

4.9 Transient State

Invoking a transient prefix command “activates” the respective transient, i.e., it puts a
transient keymap into effect, which binds the transient’s infix and suffix commands.

The default behavior while a transient is active is as follows:

e Invoking an infix command does not affect the transient state; the transient remains
active.

e Invoking a (non-infix) suffix command “deactivates” the transient state by removing
the transient keymap and performing some additional cleanup.

Chapter 4: Defining New Commands 27

e Invoking a command that is bound in a keymap other than the transient keymap is
disallowed and trying to do so results in a warning. This does not “deactivate” the
transient.

The behavior can be changed for all suffixes of a particular prefix and/or for individual
suffixes. The values should nearly always be booleans, but certain functions, called “pre-
commands”, can also be used. These functions are named transient--do-VERB, and the
symbol VERB can be used as a shorthand.

A boolean is interpreted as answering the question "does the transient stay active, when
this command is invoked?" t means that the transient stays active, while nil means that
invoking the command exits the transient.

Note that when the suffix is a “sub-prefix”, invoking that command always activates
that sub-prefix, causing the outer prefix to no longer be active and displayed. Here t means
that when you exit the inner prefix, then the outer prefix becomes active again, while nil
means that all outer prefixes are exited at once.

e The behavior for non-suffixes can be set for a particular prefix, by the prefix’s
transient-non-suffix slot to a boolean, a suitable pre-command function, or a
shorthand for such a function. See [Pre-commands for Non-Suffixes], page 29.

e The common behavior for the suffixes of a particular prefix can be set using the prefix’s
transient-suffixes slot.

The value specified in this slot does not affect infixes. Because it affects both regular
suffixes as well as sub-prefixes, which have different needs, it is best to avoid explicitly
specifying a function.

e The behavior of an individual suffix can be changed using its transient slot. While it
is usually best to use a boolean, for this slot it can occasionally make sense to specify
a function explicitly.

Note that this slot can be set when defining a suffix command using transient-
define-suffix and/or in the definition of the prefix. If set in both places, then the
latter takes precedence, as usual.

The available pre-command functions are documented in the following sub-sections.
They are called by transient--pre-command, a function on pre-command-hook, and the
value that they return determines whether the transient is exited. To do so the value of one
of the constants transient--exit or transient--stay is used (that way we don’t have to
remember if t means “exit” or “stay”).

Additionally, these functions may change the value of this-command (which
explains why they have to be called using pre-command-hook), call transient-
export, transient--stack-zap or transient--stack-push; and set the values of
transient--exitp, transient--helpp or transient--editp.

For completeness sake, some notes about complications:

e The transient-ness of certain built-in suffix commands is specified using transient-
predicate-map. This is a special keymap, which binds commands to pre-commands
(as opposed to keys to commands) and takes precedence over the prefix’s transient-
suffix slot, but not the suffix’s transient slot.

e While a sub-prefix is active we nearly always want C-g to take the user back to the
“super-prefix”, even when the other suffixes don’t do that. However, in rare cases this

Chapter 4: Defining New Commands 28

may not be desirable, in which case replace can be used as the value of the sub-prefix’s
transient slot.

Pre-commands for Infixes

The default for infixes is transient--do-stay. This is also the only function that makes
sense for infixes, which is why this predicate is used even if the value of the prefix’s
transient-suffix slot is t. In extremely rare cases, one might want to use something
else, which can be done by setting the infix’s transient slot directly.

transient--do-stay [Function]
Call the command without exporting variables and stay transient.

Pre-commands for Suffixes

By default, invoking a suffix causes the transient to be exited.

The behavior for an individual suffix command can be changed by setting its transient
slot to a boolean (which is highly recommended), or to one of the following pre-commands.

transient--do-exit [Function]
Call the command after exporting variables and exit the transient.

transient--do-return [Function]
Call the command after exporting variables and return to the parent prefix. If there
is no parent prefix, then call transient--do-exit.

transient--do-call [Function]
Call the command after exporting variables and stay transient.

The following pre-commands are only suitable for sub-prefixes. It is not necessary to
explicitly use these predicates because the correct predicate is automatically picked based
on the value of the transient slot for the sub-prefix itself.

transient--do-recurse [Function]
Call the transient prefix command, preparing for return to outer transient.

Whether we actually return to the parent transient is ultimately under the control of
each invoked suffix. The difference between this pre-command and transient--do-
stack is that it changes the value of the transient-suffix slot to t.

If there is no parent transient, then only call this command and skip the second step.

transient--do-stack [Function]
Call the transient prefix command, stacking the active transient. Push the active
transient to the transient stack.

Unless transient--do-recurse is explicitly used, this pre-command is automatically
used for suffixes that are prefixes themselves, i.e., for sub-prefixes.

transient--do-replace [Function]
Call the transient prefix command, replacing the active transient. Do not push the
active transient to the transient stack.

Unless transient--do-recurse is explicitly used, this pre-command is automatically
used for suffixes that are prefixes themselves, i.e., for sub-prefixes.

Chapter 4: Defining New Commands 29

transient--do-suspend [Function]
Suspend the active transient, saving the transient stack.

This is used by the command transient-suspend and optionally also by “external
events” such as handle-switch-frame. Such bindings should be added to
transient-predicate-map.

Pre-commands for Non-Suffixes

By default, non-suffixes (commands that are bound in other keymaps beside the transient
keymap) cannot be invoked. Trying to invoke such a command results in a warning and
the transient stays active.

If you want a different behavior, then set the transient-non-suffix slot of the transient
prefix command. The value should be a boolean, answering the question, "is it allowed to
invoke non-suffix commands?, a pre-command function, or a shorthand for such a function.

If the value is t, then non-suffixes can be invoked, when it is nil (the default) then they
cannot be invoked.

The only other recommended value is leave. If that is used, then non-suffixes can be
invoked, but if one is invoked, then that exits the transient.

transient--do-warn [Function]
Call transient-undefined and stay transient.

transient--do-stay [Function]
Call the command without exporting variables and stay transient.

transient--do-leave [Function]
Call the command without exporting variables and exit the transient.

Special Pre-Commands

transient--do-quit-one [Function]
If active, quit help or edit mode, else exit the active transient.

This is used when the user pressed C-g.

transient--do-quit-all [Function]
Exit all transients without saving the transient stack.

This is used when the user pressed C-q.

transient--do-suspend [Function]
Suspend the active transient, saving the transient stack.

This is used when the user pressed C-z.

30

5 Classes and Methods

Transient uses classes and generic functions to make it possible to define new types of suffix
and prefix commands, which are similar to existing types, but behave differently in some
respects.

Every prefix, infix and suffix command is associated with an object, which holds infor-
mation, which controls certain aspects of its behavior. This happens in two ways.

e Associating a command with a certain class gives the command a type. This makes it
possible to use generic functions to do certain things that have to be done differently
depending on what type of command it acts on.

That in turn makes it possible for third-parties to add new types without having to
convince the maintainer of Transient, that that new type is important enough to justify
adding a special case to a dozen or so functions.

e Associating a command with an object makes it possible to easily store information
that is specific to that particular command.

Two commands may have the same type, but obviously their key bindings and descrip-
tions still have to be different, for example.

The values of some slots are functions. The reader slot for example holds a function
that is used to read a new value for an infix command. The values of such slots are
regular functions.

Generic functions are used when a function should do something different based on the
type of the command, i.e., when all commands of a certain type should behave the
same way but different from the behavior for other types. Object slots that hold a
regular function as value are used when the task that they perform is likely to differ
even between different commands of the same type.

5.1 Group Classes

The type of a group can be specified using the :class property at the beginning of the
class specification, e.g., [:class transient-columns ...] in a call to transient-define-
prefix.

e The abstract transient-child class is the base class of both transient-group (and
therefore all groups) as well as of transient-suffix (and therefore all suffix and infix
commands).

This class exists because the elements (or “children”) of certain groups can be other
groups instead of suffix and infix commands.

e The abstract transient-group class is the superclass of all other group classes.
e The transient-column class is the simplest group.

This is the default “flat” group. If the class is not specified explicitly and the first
element is not a vector (i.e., not a group), then this class is used.

This class displays each element on a separate line.

e The transient-row class displays all elements on a single line.

Chapter 5: Classes and Methods 31

e The transient-columns class displays commands organized in columns.

Direct elements have to be groups whose elements have to be commands or strings.
Each subgroup represents a column. This class takes care of inserting the subgroups’
elements.

This is the default “nested” group. If the class is not specified explicitly and the first
element is a vector (i.e., a group), then this class is used.

e The transient-subgroups class wraps other groups.

Direct elements have to be groups whose elements have to be commands or strings.
This group inserts an empty line between subgroups. The subgroups themselves are
responsible for displaying their elements.

5.2 Group Methods

transient-setup-children group children [Function]
This generic function can be used to setup the children or a group.

The default implementation usually just returns the children unchanged, but if the
setup-children slot of GROUP is non-nil, then it calls that function with CHIL-
DREN as the only argument and returns the value.

The children are given as a (potentially empty) list consisting of either group or suffix
specifications. These functions can make arbitrary changes to the children including
constructing new children from scratch.

transient--insert-group group [Function]
This generic function formats the group and its elements and inserts the result into
the current buffer, which is a temporary buffer. The contents of that buffer are later
inserted into the menu buffer.

Functions that are called by this function may need to operate in the buffer
from which the transient was called. To do so they can temporarily make the
transient--shadowed-buffer the current buffer.

5.3 Prefix Classes

Transient itself provides a single class for prefix commands, transient-prefix, but package
authors may wish to define specialized classes. Doing so makes it possible to change the
behavior of the set of prefix commands that use that class, by implementing specialized
methods for certain generic functions (see Section 5.5 [Prefix Methods|, page 33).

A transient prefix command’s object is stored in the transient--prefix property of
the command symbol. While a transient is active, a clone of that object is stored in the
variable transient--prefix. A clone is used because some changes that are made to the
active transient’s object should not affect later invocations.

5.4 Suffix Classes

e All suffix and infix classes derive from transient-suffix, which in turn derives from
transient-child, from which transient-group also derives (see Section 5.1 [Group
Classes], page 30).

Chapter 5: Classes and Methods 32

e All infix classes derive from the abstract transient-infix class, which in turn derives
from the transient-suffix class.

Infixes are a special type of suffixes. The primary difference is that infixes always
use the transient--do-stay pre-command, while non-infix suffixes use a variety of
pre-commands (see Section 4.9 [Transient State|, page 26). Doing that is most easily
achieved by using this class, though theoretically it would be possible to define an infix
class that does not do so. If you do that then you get to implement many methods.

Also, infixes and non-infix suffixes are usually defined using different macros (see Sec-
tion 4.4 [Defining Suffix and Infix Commands|, page 22).

e Classes used for infix commands that represent arguments should be derived from the
abstract transient-argument class.

e The transient-switch class (or a derived class) is used for infix arguments that rep-
resent command-line switches (arguments that do not take a value).

e The transient-option class (or a derived class) is used for infix arguments that rep-
resent command-line options (arguments that do take a value).

e The transient-switches class can be used for a set of mutually exclusive command-
line switches.

e The transient-files class can be used for a ‘--’ argument that indicates that all

remaining arguments are files.

e Classes used for infix commands that represent variables should derived from the ab-
stract transient-variable class.

e The transient-information and transient-information* classes are special in that
suffixes that use these class are not associated with a command and thus also not with
any key binding. Such suffixes are only used to display arbitrary information, and that
anywhere a suffix can appear. Display-only suffix specifications take these form:

(:info DESCRIPTION [KEYWORD VALUE]...)
(:infox DESCRIPTION [KEYWORD VALUE]...)

The :info and :info* keyword arguments replaces the :description keyword used
for other suffix classes. Other keyword arguments that you might want to set, include
:face, predicate keywords (such as :if and :inapt-if), and :format. By default the
value of :format includes %k, which for this class is replaced with the empty string or
spaces, if keys are being padded in the containing group.

The only difference between these two classes is that : infox* aligns its description with
the descriptions of suffix commands, while for :info the description bleeds into the
area where suffixes display their key bindings.

e The transient-lisp-variable class can be used to show and change the value of
lisp variables. This class is not fully featured yet and it is somewhat likely that future
improvements won’t be fully backward compatible.

e The transient-cons-option class is intended for situations where transient-args
should return an alist, instead of a list of strings (arguments). Such suffixes can be
specified in prefix definitions like so:

(:cons OPTION :key KEY [KEYWORD VALUE]...)

OPTION may be something other than a string, likely a keyword or some other symbol,
it is used as the car of the cons-cell. When using such an inline definition :key has

Chapter 5: Classes and Methods 33

to be specified. In most cases :reader should also be specified. When defining such
a suffix separately, the "alist key" has to be specified using the :variable keyword
argument.

This class is still experimental it is somewhat likely that future improvements won’t be
fully backward compatible.

e The transient-describe-target class is used by the command transient-
describe.

e The transient-value-preset class is used to implement the command transient-
preset, which activates a value preset.

Magit defines additional classes, which can serve as examples for the fancy things you
can do without modifying Transient. Some of these classes will likely get generalized and
added to Transient. For now they are very much subject to change and not documented.

5.5 Prefix Methods

To get information about the methods implementing these generic functions use describe-
function.

transient-init-value obj [Function]
This generic function sets the initial value of the object OBJ. Methods exist for both
prefix and suffix objects.

The default method for prefix objects sets the value of OBJ’s value slot to the set,
saved or default value. The value that is set for the current session is preferred over
the saved value, which is preferred over the default value.

The default value is determined using the generic function transient-default-
value. If you need to change how the value for a prefix class is determined, its
usually sufficient to implement a method for that function.

transient-default-value obj [Function]
This generic function returns the default value of the object OBJ. Methods exist for
both prefix and suffix objects.

The default method for prefix objects returns the value of the default-value slot if
that is bound and not a function. If it is a function, that is called to get the value. If
the slot is unbound, nil is returned.

transient-prefix-value obj [Function]
This generic function returns the value of the prefix object OBJ.

OBJ is a prototype object and is only used to select the appropriate method of this
generic function. This function does not return the value of that object. Instead it
extracts the name of the respective command from the object and uses that to collect
the current values from the suffixes of the prefix from which the current command
was invoked. If the current command was not invoked from the identified prefix, then
this method returns the set, save or default value, as described for transient-args.

This function is only intended to be used by transient-args. It is not defined as an
internal function because third-party packages may define their own methods. That
does not mean that it would be a good idea to call it for any other purpose.

Chapter 5: Classes and Methods 34

The respective generic function for infix and suffix objects is named transient-
infix-value.

transient-init-scope obj [Function]
This generic function sets the scope of the object OBJ. Methods exist for both prefix
and suffix objects.

This function is called for all prefix and suffix commands, but unless a concrete
method is implemented this falls through to the default implementation, which is a
noop.

transient-set-value, transient-save-value, transient-reset-value,
transient--history-key, transient--history-push and transient--history-init
are other generic functions dealing with the value of prefix objects. See their doc-strings
for more information.

transient-show-help is another generic function implemented for prefix commands.
The default method effectively describes the command using describe-function.

5.6 Suffix Methods

To get information about the methods implementing these generic functions use describe-
function.

5.6.1 Suffix Value Methods

transient-init-value obj [Function]
This generic function sets the initial value of the object OBJ. Methods exist for both
prefix and suffix objects.

For transient-argument objects this function handles setting the value by itself.

For other transient-suffix objects (including transient-infix objects), this calls
transient-default-value and uses the value returned by that, unless it is the spe-
cial value eieio--unbound, which indicates that there is no default value. Since
that is what the default method for transient-suffix objects does, both of these
functions effectively are noops for these classes.

If you implement a class that derives from transient-infix directly, then you must
implement a dedicated method for this function and/or transient-default-value.

transient-default-value obj [Function]
This generic function returns the default value of the object OBJ. Methods exist for
both prefix and suffix objects.

transient-infix-read obj [Function]
This generic function determines the new value of the infix object OBJ.

This function merely determines the value; transient-infix-set is used to actually
store the new value in the object.

For most infix classes this is done by reading a value from the user using the reader
specified by the reader slot (using the transient-infix-value method described
below).

Chapter 5: Classes and Methods 35

For some infix classes the value is changed without reading anything in the minibuffer,
i.e., the mere act of invoking the infix command determines what the new value should
be, based on the previous value.

transient-prompt obj [Function]
This generic function returns the prompt to be used to read infix object OBJ’s value.

transient-infix-set obj value [Function]
This generic function sets the value of infix object OBJ to VALUE.

transient-infix-value obj [Function]
This generic function returns the value of the suffix object OBJ.

This function is called by transient-args (which see), meaning this function is how
the value of a transient is determined so that the invoked suffix command can use it.

Currently most values are strings, but that is not set in stone. nil is not a value, it
means “no value”.

Usually only infixes have a value, but see the method for transient-suffix.

transient-init-scope obj [Function]
This generic function sets the scope of the object OBJ. Methods exist for both prefix
and suffix objects.

The scope is actually a property of the transient prefix, not of individual suffixes.
However it is possible to invoke a suffix command directly instead of from a transient.
In that case, if the suffix expects a scope, then it has to determine that itself and
store it in its scope slot.

This function is called for all prefix and suffix commands, but unless a concrete
method is implemented, this falls through to the default implementation, which is a
noop.

5.6.2 Suffix Format Methods

transient-format obj [Function]
This generic function formats and returns OBJ for display.

When this function is called, then the current buffer is some temporary buffer. If you
need the buffer from which the prefix command was invoked to be current, then do
so by temporarily making transient--source-buffer current.

transient-format-key obj [Function]
This generic function formats OBJ’s key for display and returns the result.

transient-format-description obj [Function]
This generic function formats OBJ’s description for display and returns the result.

transient-format-value obj [Function]
This generic function formats OB.J’s value for display and returns the result.

Chapter 5: Classes and Methods 36

transient-show-help obj [Function]
Show help for the prefix, infix or suffix command represented by OBJ.

Regardless of OBJ’s type, if its show-help slot is non-nil, that must be a function,
which takes OBJ is its only argument. It must prepare, display and return a buffer,
and select the window used to display it. The transient-show-help-window macro
is intended for use in such functions.

For prefixes, show the info manual, if that is specified using the info-manual slot.
Otherwise, show the manpage if that is specified using the man-page slot. Otherwise,
show the command’s documentation string.

For suffixes, show the command’s documentation string.

For infixes, show the manpage if that is specified. Otherwise show the command’s
documentation string.

transient-with-help-window &rest body [Macro]
Evaluate BODY, send output to *Help* buffer, and display it in a window. Select
the help window, and make the help buffer current and return it.

transient-show-summary obj &optional return [Function]
This generic function shows or, if optional RETURN is non-nil, returns a brief
summary about the command at point or hovered with the mouse.

This function is called when the mouse is moved over a command and (if the value
of transient-enable-popup-navigation is verbose) when the user navigates to a
command using the keyboard.

If OBJ’s summary slot is a string, that is used. If summary is a function, that is called
with OBJ as the only argument and the returned string is used. If summary is or
returns something other than a string or nil, no summary is shown. If summary is or
returns nil, the first line of the documentation string is used, if any.

If RETURN is non-nil, this function returns the summary instead of showing it.
This is used when a tooltip is needed.

5.7 Prefix Slots

Value and Scope

e default-value The default value of the prefix. Use the keyword argument :value
(sic) to set this slot in the definition of a prefix.

e init-value A function that is responsible for setting the object’s value. If bound, then
this is called with the object as the only argument. Usually this is not bound, in which
case the object’s primary transient-init-value method is called instead.

e history-key If multiple prefix commands should share a single value, then this slot
has to be set to the same value for all of them. You probably don’t want that.

e remember-value When a suffix command is invoked, which can consume the prefix’s
value (which depends on the suffix slot transient and the prefix slots transient-
suffix and transient-non-suffix), then the value is automatically pushed to the
prefix’s value history.

Chapter 5: Classes and Methods 37

This slot allows additionally setting or even saving the value, so that it becomes the
initial value when the menu is invoked again.

Beside nil, the value can be one of these symbols:

e export Set the value when it is exported. That is the time when the value would
ordinarily just be pushed to the history stack.

e exit Set the value when the menu is exited, except when that is done using a
command whose sole purpose is to quit the menu.

e quit Set the value when the menu is quit, using a command whose sole purpose
is to do so.

The value can also be a list of one or more of these symbols and optionally also the
symbol save.

e save Instead of merely setting the value, save it, so that it will be used in future
Emacs sessions. At least one other symbol has to be used together with this.

The value can also be a (quoted) variable, whose value is a list of symbols as described
above. Ideally an option should be used, since not all users will find the automatic
saving of the value desirable.

e incompatible A list of lists. Each sub-list specifies a set of mutually exclusive argu-
ments. Enabling one of these arguments causes the others to be disabled. An argument
may appear in multiple sub-lists. Arguments must me given in the same form as used
in the argument or argument-format slot of the respective suffix objects, usually some-
thing like --switch or --option=Y%s. For options and transient-switches suffixes
it is also possible to match against a specific value, as returned by transient-infix-
value, for example, ——option=one.

e scope For some transients it might be necessary to have a sort of secondary value,
called a “scope”. See transient-define-prefix.

Behavior

e transient-suffix, transient-non-suffix and transient-switch-frame play
a part when determining whether the currently active transient prefix command
remains active/transient when a suffix or arbitrary non-suffix command is invoked.
See Section 4.9 [Transient State], page 26.

e refresh-suffixes Normally suffix objects and keymaps are only setup once, when the
prefix is invoked. Setting this to t, causes them to be recreated after every command.
This is useful when using :if... predicates, and those need to be rerun for some
reason. Doing this is somewhat costly, and there is a risk of losing state, so this is
disabled by default and still considered experimental.

e environment A function used to establish an environment while initializing, refreshing
or redisplaying a transient prefix menu. This is useful to establish a cache, in case
multiple suffixes require the same expensive work. The provided function is called with
at least one argument, the function for which it establishes the environment. It must
funcall that function with no arguments. During initialization the second argument
is the prefix object being initialized. This slot is still experimental.

Chapter 5: Classes and Methods 38

Appearance

e display-action determines how this prefix is displayed, overriding transient-
display-buffer-action. It should have the same type.

e mode-line-format is this prefix’s mode line format, overriding transient-mode-line-
format. It should have the same type.

e column-widths is only respected inside transient-columns groups and allows aligning
columns across separate instances of that. A list of integers.

e variable-pitch controls whether alignment is done pixel-wise to account for use of
variable-pitch characters, which is useful, e.g., when using emoji.

Documentation

e show-help, man-page or info-manual can be used to specify the documentation for the
prefix and its suffixes. The command transient-help uses the function transient-
show-help (which see) to lookup and use these values.

e suffix-description can be used to specify a function which provides fallback descrip-
tions for suffixes that lack a description. This is intended to be temporarily used when
implementing of a new prefix command, at which time transient-command-summary-
or-name is a useful value.

Internal

These slots are mostly intended for internal use. They should not be set in calls to
transient-define-prefix.

e prototype When a transient prefix command is invoked, then a clone of that object
is stored in the global variable transient--prefix and the prototype is stored in the
clone’s prototype slot.

e command The command, a symbol. Each transient prefix command consists of a com-
mand, which is stored in a symbol’s function slot and an object, which is stored in the
transient--prefix property of the same symbol.

e level The level of the prefix commands. The suffix commands whose layer is equal or
lower are displayed. See Section 2.7 [Enabling and Disabling Suffixes|, page 6.

e value The likely outdated value of the prefix. Instead of accessing this slot directly
you should use the function transient-get-value, which is guaranteed to return the
up-to-date value.

e history and history-pos are used to keep track of historic values. Unless you im-
plement your own transient-infix-read method you should not have to deal with
these slots.

e unwind-suffix is used internally to ensure transient state is properly exited, even in
case of an error.

5.8 Suffix Slots

Here we document most of the slots that are only available for suffix objects. Some slots are
shared by suffix and group objects, they are documented in Section 5.9 [Predicate Slots],
page 41.

Also see Section 5.4 [Suffix Classes|, page 31.

Chapter 5: Classes and Methods 39

Slots of transient-child

This is the abstract superclass of transient-suffix and transient-group. This is where
the shared if* and inapt-if* slots (see Section 5.9 [Predicate Slots|, page 41), the level
slot (see Section 2.7 [Enabling and Disabling Suffixes|, page 6), and the advice and advicex
slots (see [Slots of transient-suffix|, page 39) are defined.

parent The object for the parent group.

Slots of transient-suffix

key is the key binding, a string in the format returned by describe-key and understood
by kbd.

That format is more permissive than the one accepted by key-valid-p. Being more
permissive makes it possible, for example, to write the key binding, which toggles the -a
command line argument, as "-a", instead of having to write "- a". Likewise additional
spaces can be added, which is not removed when displaying the binding in the menu,
which is useful for alignment purposes.

command The command, a symbol.

transient Whether to stay transient. See Section 4.9 [Transient State], page 26.

format The format used to display the suffix in the menu buffer. It must contain the
following %-placeholders:

e Xk For the key.
e ’d For the description.
e Yv For the infix value. Non-infix suffixes don’t have a value.

description The description, either a string or a function, which is called with zero
or one argument (the suffix object), and returns a string.

face Face used for the description. In simple cases it is easier to use this instead of
using a function as description and adding the styling there. face is appended using
add-face-text-property.

show-help A function used to display help for the suffix. If unspecified, the prefix
controls how help is displayed for its suffixes. See also function transient-show-help.

summary The summary displayed in the echo area, or as a tooltip. If this is nil, which
it usually should be, the first line of the documentation string is used instead. See
transient-show-summary for details.

definition A command, which is used if the body is omitted when defining a command
using transient-define-suffix.

The following two slots are experimental. They can also be set for a group, in which

case they apply to all suffixes in that group, except for suffixes that set the same slot to a
non-nil value.

advice A function used to advise the command. The advise is called using (apply
advice command args), i.e., it behaves like an "around" advice.

advicex A function used to advise the command. Unlike advice, this advises not only
the command body but also its interactive spec. If both slots are non-nil, advice is
used for the body and advicex is used for the interactive form. When advising the

Chapter 5: Classes and Methods 40

interactive spec, called using (funcall advice #'advice-eval-interactive-spec
spec).

Slots of transient-infix

Some of these slots are only meaningful for some of the subclasses. They are defined here
anyway to allow sharing certain methods.

argument The long argument, e.g., ——verbose.

shortarg The short argument, e.g., -v.

value The value. Should not be accessed directly.

init-value Function that is responsible for setting the object’s value. If bound, then
this is called with the object as the only argument. Usually this is not bound, in which
case the object’s primary transient-init-value method is called instead.
unsavable Whether the value of the suffix is not saved as part of the prefixes.
multi-value For options, whether the option can have multiple values. If this is non-
nil, then the values are read using completing-read-multiple by default and if you
specify your own reader, then it should read the values using that function or similar.

Supported non-nil values are:

e Use rest for an option that can have multiple values. This is useful e.g., for an —-
argument that indicates that all remaining arguments are files (such as git log
—- filel file2).

In the list returned by transient-args such an option and its values are repre-
sented by a single list of the form (ARGUMENT . VALUES).

e Use repeat for an option that can be specified multiple times.

In the list returned by transient-args each instance of the option and its value
appears separately in the usual from, for example: ("--another-argument"
"-—option=first" "--option=second").

In both cases the option’s values have to be specified in the default value of a prefix using
the same format as returned by transient-args, e.g., ("--other" "--o=1" "--0=2"
(ll__ll IIflll llf2")) 3

always-read For options, whether to read a value on every invocation. If this is nil,
then options that have a value are simply unset and have to be invoked a second time
to set a new value.

allow-empty For options, whether the empty string is a valid value.

history-key The key used to store the history. This defaults to the command name.
This is useful when multiple infixes should share the same history because their values
are of the same kind.

reader The function used to read the value of an infix. Not used for switches. The
function takes three arguments, PROMPT, INITIAL-INPUT and HISTORY, and must
return a string.

prompt The prompt used when reading the value, either a string or a function that
takes the object as the only argument and which returns a prompt string.

choices A list of valid values, or a function that returns such a list. The latter is not
implemented for transient-switches, because I couldn’t think of a use-case. How
exactly the choices are used varies depending on the class of the suffix.

Chapter 5: Classes and Methods 41

Slots of transient-variable

e variable The variable.

Slots of transient-switches

e argument-format The display format. Must contain %s, one of the choices is substi-
tuted for that. E.g., --Y%s-order.

e argument-regexp The regexp used to match any one of the switches. E.g.,
\\ (-=\\ (topo\\ |author-date\\ |date\\) -order\\).

5.9 Predicate Slots

Suffix and group objects share two sets of predicate slots that control whether a group or
suffix should be available depending on some state. Only one slot from each set can be used
at the same time. It is undefined which slot is honored if you use more than one.

Predicates from the first group control whether the suffix is present in the menu at all.

if Enable if predicate returns non-nil.

e if-not Enable if predicate returns nil.

e if-non-nil Enable if variable’s value is non-nil.

e if-nil Enable if variable’s value is nil.

e if-mode Enable if major-mode matches value.

e if-not-mode Enable if major-mode does not match value.

e if-derived Enable if major-mode derives from value.

e if-not-derived Enable if major-mode does not derive from value.

Predicates from the second group control whether the suffix can be invoked. The suffix

is shown in the menu regardless, but when it is considered "inapt", then it is grayed out to
indicated that it currently cannot be invoked.

e inapt-if Inapt if predicate returns non-nil.

e inapt-if-not Inapt if predicate returns nil.

e inapt-if-non-nil Inapt if variable’s value is non-nil.

e inapt-if-nil Inapt if variable’s value is nil.

e inapt-if-mode Inapt if major-mode matches value.

e inapt-if-not-mode Inapt if major-mode does not match value.

e inapt-if-derived Inapt if major-mode derives from value.

e inapt-if-not-derived Inapt if major-mode does not derive from value.

By default these predicates run when the prefix command is invoked, but this can be

changes, using the refresh-suffixes prefix slot. See Section 5.7 [Prefix Slots|, page 36.

One more slot is shared between group and suffix classes, level. Like the slots docu-
mented above, it is a predicate, but it is used for a different purpose. The value has to be
an integer between 1 and 7. level controls whether a suffix or a group should be available
depending on user preference. See Section 2.7 [Enabling and Disabling Suffixes]|, page 6.

42

Appendix A FAQ

A.1 Can I control how the menu buffer is displayed?

Yes, see transient-display-buffer-action in Section 2.9 [Configuration], page 9. You
can also control how the menu buffer is displayed on a case-by-case basis by passing
:display-action to transient-define-prefix.

A.2 How can I copy text from the menu buffer?

To be able to mark text in Transient’s menu buffer using the mouse, you have to add the
below binding. Note that for technical reasons, the region won’t be visualized, while doing
so. After you have quit the transient menu, you will be able to yank it in another buffer.

(keymap-set transient-predicate-map
"<mouse-set-region>"
#'transient--do-stay)

Copying the region while not seeing the region is a bit fiddly, so a dedicated command,
transient-copy-menu-text, was added. You have to add a binding for this command in
transient-map.

(keymap-set transient-map "C-c C-w" #'transient-copy-menu-text)

A.3 How can I autoload prefix and suffix commands?

If your package only supports Emacs 30, just prefix the definition with ;; ;###autoload.
If your package supports released versions of Emacs, you unfortunately have to use a long
form autoload comment as described in Section “Autoload” in elisp.

; ;s ###autoload (autoload 'magit-dispatch "magit" nil t)
(transient-define-prefix magit-dispatch ()

>

A.4 How does Transient compare to prefix keys and
universal arguments?

See https://github.com/magit/transient/wiki/Comparison-with-prefix-keys-and-universal-argume

A.5 How does Transient compare to Magit-Popup and
Hydra?

See https://github.com/magit/transient/wiki/Comparison-with-other-packages.

A.6 Why does g not quit popups anymore?

I agree that q is a good binding for commands that quit something. This includes quitting
whatever transient is currently active, but it also includes quitting whatever it is that some
specific transient is controlling. The transient magit-blame for example binds g to the
command that turns magit-blame-mode off.

https://github.com/magit/transient/wiki/Comparison-with-prefix-keys-and-universal-arguments
https://github.com/magit/transient/wiki/Comparison-with-other-packages

Appendix A: FAQ 43

So I had to decide if g should quit the active transient (like Magit-Popup used to) or
whether C-g should do that instead, so that g could be bound in individual transient to
whatever commands make sense for them. Because all other letters are already reserved for
use by individual transients, I have decided to no longer make an exception for q.

If you want to get g’s old binding back then you can do so. Doing that is a bit more com-
plicated than changing a single key binding, so I have implemented a function, transient-
bind-gq-to-quit that makes the necessary changes. See its documentation string for more
information.

44

Appendix B Keystroke Index

g 3 C—X G 5
[+ 6 Cm L 7
Mmoot e 5 [0 E 5
CMp . e 5 L0 5
L P 3 L 5
[0 - Y 7 [4
C=X Gt 5 oz et e 3

45

Appendix C Command and Function Index

transient--do-call........................... 28
transient-—-do-exit.............. L 28
transient--do-leave...............iiii... 29
transient--do-quit-all...................... 29
transient--do-quit-one................ 29
transient--do-recurse 28
transient--do-replace 28
transient--do-return 28
transient--do-stack............... 28
transient--do-stay....................... 28, 29
transient--do-suspend....................... 29
transient--do-warn.................... ... 29
transient--insert-group..................... 31
transient-active-prefix..................... 26
transient-append-suffix..................... 14
transient-arg-value...............c.ouuuunnann 24
transient-args i 23
transient-copy-menu-text..................... 8
transient-default-value 33, 34
transient-define-argument................... 23
transient-define-group...................... 18
transient-define-infix..............., 22
transient-define-prefix..................... 17
transient-define-suffix..................... 22
transient-format................. 35
transient-format-description............... 35
transient-format-key 35
transient-format-value...................... 35
transient-get-suffix..................... ... 15
transient-get-value....................... ... 24
transient-help ool 6
transient-history-next 5
transient-history-prev....................... 5
transient-infix-read 34

transient-infix-set............. 35
transient-infix-value 35
transient-init-scope..................... 34, 35
transient-init-value..................... 33, 34
transient-inline-group...................... 15
transient-insert-suffix..................... 14
transient-prefix-object..................... 26
transient-prefix-value...................... 33
transient-prompt.......... ... 35
transient-quit-all............................ 3
transient-quit-one........... 3
transient-quit-seq........... ... 3
transient-remove-suffix..................... 15
transient-replace-suffix.................... 15
transient-reset il 5
transient-resume.............l 4
transient-saveol 5
transient-Scope ...t 24
transient-scroll-down 8
transient-scroll-up........................... 8
transient-set...........l 5
transient-set-default-level 7
transient-set-level................... 7
transient-setup-children.................... 31
transient-show-help......................oe. 36
transient-show-summary...................... 36
transient-suffix-object............ 25
transient-suffix-put 15
transient-suffixes................ 24
transient-suspend................ 3
transient-toggle-common...................... 4
transient-toggle-docstrings 8
transient-toggle-level-limit 7

transient-with-help-window.................. 36

46

Appendix D Variable Index

transient-align-variable-pitch............. 12
transient-common-command-prefix............. 4
transient-current-command................... 26
transient-current-prefix.................... 26
transient-current-suffixes.................. 25
transient-default-level 7
transient-detect-key-conflicts............. 13
transient-display-buffer-action............ 10
transient-enable-popup-navigation......... 10
transient-error-on-insert-failure 13
transient-exit-hook.............. 13
transient-force-fixed-pitch................ 12
transient-force-single-column.............. 11
transient-highlight-higher-levels 13

transient-highlight-mismatched-keys....... 12

transient-history-file....................... 6
transient-history-limit...................... 6
transient-levels-file........................ 7
transient-mode-line-format.................. 11
transient-post-exit-hook.................... 13
transient-read-with-initial-input 10
transient-save-history....................... 6
transient-semantic-coloring 11
transient-setup-buffer-hook................ 13
transient-show-common-commands.............. 4
transient-show-during-minibuffer-read...... 9
transient-show-popup.......................... 9
transient-substitute-key-function......... 12
transient-values-file........................ 5

47

Appendix E Concept Index

A

aborting transients............. oL 3

C

classes and methods............................ 30
command dispatchers.............. 16
common suffix commands 4

D

defining infix commands, 22
defining suffix commands.................... ... 22
disabling suffixes..........ol 6

E

enabling suffixes ool 6

G

getting help........ . o i 6
group specifications 18

I

invoking transients............ L. 3

L

levels ... 6

M

modifying existing transients................... 14

Q

quit transient oo i 3

R

resuming transientso 3

S

saving values of arguments 5
scope of a transientL 18
suffix specificationso, 21

T

transient state L. 26
transient-level........... 6

v

value history.......... 5

48

Appendix F GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://fsf.org/

Appendix F: GNU General Public License 49

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

Appendix F: GNU General Public License 50

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

Appendix F: GNU General Public License 51

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

Appendix F: GNU General Public License 52

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

Appendix F: GNU General Public License 53

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

Appendix F: GNU General Public License 54

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

Appendix F: GNU General Public License 55

10.

11.

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

Appendix F: GNU General Public License 56

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

Appendix F: GNU General Public License 57

15.

16.

17.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

Appendix F: GNU General Public License 58

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a

GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-1gpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

	Table of Contents
	1 Introduction
	2 Usage
	Invoking Transients
	Aborting and Resuming Transients
	Common Suffix Commands
	Saving Values
	Using History
	Getting Help for Suffix Commands
	Enabling and Disabling Suffixes
	Other Commands
	Configuration

	3 Modifying Existing Transients
	4 Defining New Commands
	Technical Introduction
	Defining Transients
	Binding Suffix and Infix Commands
	Group Specifications
	Suffix Specifications

	Defining Suffix and Infix Commands
	Using Infix Arguments
	Using Prefix Scope
	Current Suffix Command
	Current Prefix Command
	Transient State

	5 Classes and Methods
	Group Classes
	Group Methods
	Prefix Classes
	Suffix Classes
	Prefix Methods
	Suffix Methods
	Suffix Value Methods
	Suffix Format Methods

	Prefix Slots
	Suffix Slots
	Predicate Slots

	A FAQ
	Can I control how the menu buffer is displayed?
	How can I copy text from the menu buffer?
	How can I autoload prefix and suffix commands?
	How does Transient compare to prefix keys and universal arguments?
	How does Transient compare to Magit-Popup and Hydra?
	Why does q not quit popups anymore?

	B Keystroke Index
	C Command and Function Index
	D Variable Index
	E Concept Index
	A
	C
	D
	E
	G
	I
	L
	M
	Q
	R
	S
	T
	V

	F GNU General Public License

